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Abstract— We introduce an adaptive refinement procedure
for smart and scalable abstraction of dynamical systems. Our
technique relies on partitioning the state space depending on
the observation of future outputs. However, this knowledge is
dynamically constructed in an adaptive, asymmetric way. In
order to learn the optimal structure, we define a Kantorovich-
inspired metric between Markov chains, and we use it to guide
the state partition refinement. Our technique is prone to data-
driven frameworks, but not restricted to.

We also study properties of the above mentioned metric
between Markov chains, which we believe could be of broader
interest. We propose an algorithm to approximate it, and we
show that our method yields a much better computational
complexity than using classical linear programming techniques.

I. INTRODUCTION

Feedback control of dynamical systems is at the core of
several techniques that have caused tremendous impact in
several industries, being essential to important advancements
in e.g. aerospace and robotics. Traditionally, these control
techniques were model-based, relying on a complete math-
ematical model to perform controller design. With recent
technological advancements, however, where a vast amount
of data can be collected online or offline, the interest within
the control community to study methods that leverage avail-
able data for feedback controller design has been reignited
[1], [2], [3], [4].

In this paper, we focus on data-driven techniques for
building abstractions of dynamical systems. We call these
data-driven abstractions. Abstraction methods create a sym-
bolic model [5], [6] that approximates the behavior of the
original (the “concrete”) dynamics in a way that controllers
designed for such a symbolic representation can be refined to
a valid controller for the original dynamics [7]. Several recent
research efforts started exploring the possibility of generating
abstractions for dynamical systems from observations of the
latter [8], [9], [10], [11], [12].

In [8], we show that memory-based Markov models can
be built from trajectory data. Memory has been classically
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used as a tool to mitigate non-Markovian behaviors of the
original dynamics [13], [14], a feature also explored in
recent papers [13], [10]. Increasing memory allows us to
create more precise representations of the original dynamics
using Markov decision processes (MDPs) or Markov chains.
Despite promising results, [8] does not offer an adaptive
mechanism to compute the generated abstraction, and thus it
faces the curse of dimensionality, as the number of possible
observations grows exponentially with the memory length.
In this paper, we further develop the techniques in [8] by
proposing an adaptive state space partitioning to mitigate the
curse of dimensionality.

Fig. 1: Difference between an adaptive and a brute-force approach. On
the left, an adaptive approach: only some of the possible observations
are expanded. On the right, a brute-force approach: every observation is
expanded. The two resulting abstractions have four states, but the adaptive
one provides a better abstraction (see Example 1).

A key contribution in this paper is the construction of a
novel metric between two Markov chains; this metric is then
exploited to adaptively increase memory in certain regions of
the state space, in view of taming the complexity of the gen-
erated abstraction. An illustration of the difference between
these two approaches is depicted in Figure 1. As opposed
to [8], where states of the chain are associated with past
memory, the abstractions we construct in this paper are based
on forward memory. In order to define a metric between two
Markov models, we leverage the Kantorovich metric (also
known as the Wasserstein or Earth’s mover distance) between
the induced probability on words of a fixed length and let the
word length go to infinity. To define the Kantorovich metric,
we equip the space of words with the Cantor distance, which
is classically used in symbolic dynamics [5], [15]. We argue
by means of numerical experiments that such a Kantorovich
metric is natural and meaningful for control problems. We
also show that the proposed metric is a well-defined and
intuitive notion of similarity between Markov chains, and
propose an algorithm for its computation that has better
computational complexity over a naive application of linear
programming techniques.

We believe that the proposed Kantorovich metric could be
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of much broader interest. Indeed, computing metrics between
Markov models has been an active research topic within the
computer science community [16]. Our construction on the
metric between Markov chains resembles the one presented
in [17], however with another distance. In [18] computability
and complexity results are shown for the total variation
metric. Kantorovich metrics for Markov models have been
studied in [19], [20], [21], [22], but their underlying distance
is different from ours. Our choice of the Cantor distance is
crucial both for computational aspects and for building smart
abstractions of dynamical systems.

Summarizing, our main contribution is threefold. First,
we propose a new metric to measure distance between
Markov models. Second, we develop an efficient algorithm
that approximates arbitrarily well the proposed metric. Third,
we exploit the proposed metric to adaptively improve ab-
stractions in specific regions of the state space.

Outline: The rest of this paper is organized as follows.
In Section II, we introduce the Kantorovich metric between
two Markov chains, and propose an efficient algorithm to
approximate it with arbitrary precision. In Section III, we
apply this metric to build abstractions of dynamical systems
using a greedy strategy that leads to the refinement of the
state-space partitioning. We also demonstrate the quality of
our procedure on an example.

Notations: Let A be a finite alphabet. We denote the set
of n-long sequences of this alphabet by An, and the set of
countably infinite sequences by A∗. The symbol Λ stands for
the empty sequence and, for any w1 ∈ An1 , w2 ∈ An2 , the
sequence w1w2 ∈ An1+n2 is the concatenation of w1 and
w2. Let c(x) be a number of operations with respect to some
attributes x. We say that an algorithm has a computational
complexity O(f(x)) if there exists M > 0, x0 such that, for
all x ≥ x0, c(x) ≤Mf(x). For any bounded set X ⊂ Rd, let
σ(X) be the induced σ-algebra of X , and λ be the Lebesgue
measure on Rd, then λX : σ(X) → [0, 1] is defined as
λX(A) = λ(A)/λ(X). Finally, for any set X and function
F , the set F (X) = {F (x) : x ∈ X}.

II. A KANTOROVICH METRIC BETWEEN MARKOV
CHAINS

In this section, a new notion of metric between Markov
chains is defined. In Section III below, Markov chains will
be used to represent abstractions of dynamical systems, and
this distance will be used as a tool to construct adaptive
abstractions. The present section, however, is concerned with
Markov chains in their full generality.

A. Preliminaries

Using a similar formalism as in [8], we define a labeled
Markov chain as follows.

Definition 1 (Markov chain). A Markov chain is a 5-tuple
Σ = (S,A, P, µ, L), where S is a finite set of states, A is a
finite alphabet, P is the transition matrix on S ×S , µ is the
initial measure on S , and L : S → A is a labelling function.

In Definition 1, the entry of the transition matrix Ps,s′

represents the probability P(Xk+1 = s′|Xk = s). The
labelling L induces a partition of the states. Consider the
equivalence relation on S defined as s ∼ s′ if and only if
L(s) = L(s′). For any a ∈ A, the notion of equivalent
classes is defined as

[a] = {s ∈ S : L(s) = a}. (1)

We also define the behavior of a Markov chain B(Σ) ⊆ A∗

as follows. A sequence w∗ = (a1, a2, . . . ) ∈ B(ΣW) if there
exists s1, s2, · · · ∈ S such that µs1 > 0, Psi,si+1

> 0 and
L(si) = ai.

In the present work, we focus on a notion of metric be-
tween probabilities on label sequences. Let w = (a1, . . . , an)
be a n-long sequence of labels, and define pn : An → [0, 1]
as

pn(w) =
∑

s1∈[a1]

µs1

∑
s2∈[a2]

Ps1,s2 · · ·
∑

sn∈[an]

Psn−1,sn , (2)

that is the probability induced by the Markov chain on n-
long sequences.

Remark 1. Classical procedures are well-known in the liter-
ature allowing to compute the probabilities pn for increasing
n, with a complexity proportional to |S|2 at every step [23].

We endow the set of n-long sequences of labels with the
Cantor distance dB .

Definition 2 (Cantor’s distance, [15]). The Cantor distance
dB : An × An → R is defined as dB(w1, w2) = 2−l,
where l is the length of the longest common prefix. In other
words, let w1 = (a1, . . . , an) and w2 = (b1, . . . , bn), then
dB(w1, w2) = 2−l, where l = inf{k : ak ̸= bk}.

B. The Kantorovich metric

Consider two Markov chains Σ1 = (S1,A, P1, µ1, L1)
and Σ2 = (S2,A, P2, µ2, L2) defined on the same alphabet
A. For a fixed n, they generate the distributions pn1 and pn2
on the metric space (An, dB) as described in (2).

Definition 3 (Kantorovich metric). The Kantorovich metric
between the probability distributions pn1 and pn2 is given by

K(pn1 , p
n
2 ) = min

πn∈Π(pn
1 ,p

n
2 )

∑
w1,w2∈An

dB(w1, w2)π
n(w1, w2),

(3)
where Π(pn1 , p

n
2 ) is the set of couplings of pn1 and pn2 , which

contains the joint distributions πn : An×An → [0, 1] whose
marginal distributions are pn1 and pn2 , that is,

∀w1, w2 ∈ An : πn(w1, w2) ≥ 0,

∀w1 ∈ An :
∑

w2∈An

πn(w1, w2) = pn1 (w1),

∀w2 ∈ An :
∑

w1∈An

πn(w1, w2) = pn2 (w2).

(4)

The Kantorovich metric is often interpreted as an op-
timal transport problem. Indeed one can see problem (3)
as the problem of finding the optimal way to satisfy “de-
mands” pn2 with “supplies” pn1 , where the cost of moving
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πn(w1, w2) probability mass from w1 to w2 amounts to
πn(w1, w2)dB(w1, w2). An illustration is provided in Fig-
ure 2.

Zero cost

 cost

 cost

Fig. 2: Interpretation of the Kantorovich distance as an optimal transport
problem. In this example, the alphabet A = {0, 1}, p21(w) = 1/4 for all
w ∈ A2, and p22(00) = 0, p22(01) = p22(10) = 1/4, and p22(11) =
1/2. One can see that the optimal way to satisfy the demands pn2 with
the supplies pn1 is to move 1/4 of probability mass from 00 to 11, that is
π2(00, 11) = 1/4. Since dB(00, 11) = 1/2, the Kantorovich distance is
K(p21, p

2
2) = 1/8.

A naı̈ve computation of K(pn1 , p
n
2 ) in (3) entails solving a

linear program. However, standard techniques, such as inte-
rior point methods and network simplex result in some cases
in a complexity of O(n|A|3n log(|A|)), and therefore scale
very poorly with the number labels. In this section, we show
that it is possible to compute K(pn1 , p

n
2 ) in O(|S|2|A|n+1)

operations.
We present in Theorem 1 a key result for writing an

efficient algorithm. Due to space constraints, all the proofs
in this paper are omitted and can be found in the extended
version of this paper [24].

Theorem 1. For any n ≥ 1, let πn be the solution of (3).
Then the following holds:

K(pn+1
1 , pn+1

2 ) = K(pn1 , p
n
2 )

+ 2−(n+1)
∑

w∈An

[
r(w)−

∑
a∈A

r(wa)

]
,

(5)

where
r(w) = min{pn1 (w), pn2 (w)},

r(wa) = min{pn+1
1 (wa), pn+1

2 (wa)}.
Theorem 1 allows to prove that Algorithm 1 efficiently

computes the Kantorovich metric between pn1 and pn2 .

Algorithm 1 KANT(k,m,w, n)

for i = 1, . . . , |A| do
Compute pn1 (wai) and pn2 (wai) (see Remark 1)
ri ← min{pn1 (wai), pn2 (wai)}

RES = 2−(k+1)(m−
∑

i=1,...,|A| ri)
if k + 1 = n then

return RES

for i = 1, . . . , |A| do
if ri ̸= 0 then

RES ← RES + KANT(k + 1, ri, wai, n)
return RES

Corollary 1. Let KANT be the algorithm described in
Algorithm 1, then

K(pn1 , p
n
2 ) = KANT(0, 1,Λ, n). (6)

Moreover KANT terminates in O(|S|2|A|n+1) operations.

C. A metric between Markov chains

Let Σ1 and Σ2 be two Markov chains defined on the same
alphabet A. We define a metric between them as

d(Σ1,Σ2) = lim
n→∞

K(pn1 , p
n
2 ),

where pn1 and pn2 are the distributions on An induced by each
Markov chain on n-long label sequences.

Remark 2. The Cantor distance 2−l can be interpreted as
a discount factor. Therefore, the metric d(Σ1,Σ2), if well-
defined, can be interpreted as a discounted measure of the
difference between the behaviors B(Σ1) and B(Σ2).

We now prove that this metric is well-defined1.

Theorem 2. The metric d(Σ1,Σ2) is well-defined. Moreover,
for any n ≥ 1,

0 ≤ d(Σ1,Σ2)−K(pn1 , p
n
2 ) ≤ 2−n.

Theorem 2 provides a guarantee on the approximation
of d(Σ1,Σ2) that we will be able to compute. Indeed, for
any ε > 0, if n ≥ ⌈log2(ε−1)⌉, then 0 ≤ d(Σ1,Σ2) −
K(pn1 , p

n
2 ) ≤ ε. Following Corollary 1, for a fixed number

of labels and states, this implies that an ε-solution can be
found in O(ε−1) computational complexity.

III. APPLICATION TO DATA-DRIVEN MODEL
ABSTRACTIONS

We now show how the metric d(Σ1,Σ2) enables an adap-
tive refinement procedure for dynamical systems abstraction.

A. Abstractions with adaptive refinement

In this section, we introduce a new abstraction based
on adaptive refinements. Even though our approach can be
generalized to stochastic systems, in this preliminary work
we focus on deterministic ones, which we now define.

Definition 4 (Dynamical system). A dynamical system is the
4-tuple S = (X,A, F,H) that defines the relation

xk+1 = F (xk), yk = H(xk),

where X ⊆ Rd is the state space, A is a finite alphabet
called the output space, F : X → X is a transition function,
and H : X → A is the output function. The variables xk

and yk are called the state and the output at time k.

Also, in parallel to the definition of behavior of a Markov
chain, we define the behavior of a dynamical system B(S) ⊆
A∗ as follows. A sequence w∗ = (a1, a2, . . . ) ∈ B(S)
if there exists x1, x2, · · · ∈ X such that xi+1 = F (xi)
and H(xi) = ai. Also, in parallel to equivalent classes
(1) on Markov chains, we define equivalent classes on the

1That is, the function satisfies positivity, symmetry and triangle inequality.
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continuous state space X . A subset of states is an equivalent
class if it satisfies the recursive relation

[wa]S = {x ∈ [w]S |Hn(x) = a}, [Λ]S = X,

for any w ∈ An and a ∈ A. In other words, for a given
sequence w = (a1, . . . , an), a state x ∈ [w]S if H(x) = a1,
H(F (x)) = a2, . . . , and H(Fn−1(x)) = an. In this work,
we impose the following assumption on dynamical systems.

Assumption 1. The dynamical system S as defined as
Definition 4 is such that, for any w ∈ An and a ∈ A, the
following two conditions hold:

• If λX([w]S) = 0, then [w]S = ∅.
• If λX([wa]S) = λX([w]S), then [w]S = [wa]S .

Informally, Assumption 1 requires that any possible tra-
jectory has a nonzero probability to be sampled.

Definition 5 (Adaptive partitioning). Let w1 ∈ An1 , w2 ∈
An2 , . . . , wk ∈ Ank be k sequences of labels of different
lengths. The set of sequences W = {wi}i=1,...,k is an
adaptive partitioning for S if∪

w∈W
[w]S = X, ∀i ̸= j, [wi]S ∩ [wj ]S = ∅.

We now introduce an abstraction procedure based on an
adaptive partitioning refinements.

Definition 6 (Abstraction based on adaptive refinements).
Let S = (X,A, F,H) be a dynamical system as defined in
Definition 4, and let W be an adaptive partitioning for S as
defined in Definition 5. Then the corresponding abstraction
based on adaptive refinements is the Markov chain ΣW =
(S,A, P, µ, L) defined as follows:

• The states are the partitions, that is S =W .
• µw is the Lebesgue measure of equivalent class [w]S

on X , that is µw = λX([w]S).
• For w1 = (a1, . . . , an1

), and w2 = (b1, . . . , bn2
), let

k = min{n1 − 1, n2}, w′
1 = (a2, . . . , ak+1), and

w′
2 = (b1, . . . , bk). If w′

1 ̸= w′
2 or λX([w1]S) = 0,

then Pw1,w2 = 0. Else

Pw1,w2
=

λX([a1w2]S)

λX([w1]S)
.

• For w = (a1, . . . , an), L(w) = a1.

Informally, for a given adaptive partitioning W , the ab-
straction ΣW can be interpreted as follows. The initial
probability to be in the state w in the Markov chain is
the proportion of [w]S in X , and the probability to jump
from the state w1 to the state w2 is the proportion of [w1]S
that goes into [w2]S given the dynamics. For any sequence
w = (a1, . . . , an) ∈ An, the probability pn(w) as defined in
(2) is therefore the approximation for our abstraction of the
probability that the output signal starts with the sequence w.

We now provide a result that gives a sufficient condition
for the abstraction to have the same behavior as the original
system.

Proposition 1. Given a dynamical system S satisfying As-
sumption 1, consider abstraction ΣW as per Definition 6. If
for all w1, w2 ∈ W , Pw1,w2 ∈ {0, 1}, then B(ΣW) = B(S).

B. A data-driven abstraction

In this section, we propose a method to construct an
abstraction based on adaptive refinements, from a data set
comprising outputs sampled from the dynamical model S.
Given an adaptive partitioning W , we propose to construct
ΣW using empirical probabilities (see [8] for more details).
We make the following assumption, which considers an
idealised situation where one has an infinite number of
samples. In practice, one typically has access to a finite
number of observations, leading to approximation errors. The
techniques to study these errors are investigated, for instance,
in [10], and are left for further work in the context of this
work.

Assumption 2. For any abstraction ΣW = (W,A, P, µ, L),
the transition probabilities P and the initial distribution µ
are known exactly.

Now we are able to use the tool investigated in Sec-
tion II to find a smart adaptive partitioning. Indeed, one
can construct two abstractions ΣW1

and ΣW2
corresponding

to two different partitionings, and efficiently compute the
Kantorovich metric d(ΣW1

,ΣW2
) up to some accuracy ε

following Corollary 1. This gives a discounted measure
of the difference between B(ΣW1) and B(ΣW2) (see Re-
mark 2). This reasoning leads to the greedy procedure
REFINE(S,N, ε) described in Algorithm 2.

Algorithm 2 REFINE(S,N, ε)

W ← {(a)}a∈A
Construct ΣW from samples of S
while ∃w1, w2 ∈ W : Pw1,w2

∈ (0, 1) do
if N = 0 then

return ΣW

for i = 1, . . . , |W| do
W ′

i ←W \ {wi}
W ′

i ←W ′
i ∪ {wia}a∈A

Construct ΣW′
i

from samples of S
di ← d(ΣW ,ΣW′

i
) with precision ε

j = argmaxi=1,...,|W| di
W ←W ′

j

ΣW ← ΣW′
j

N ← N − 1
return ΣW

An interpretation of Algorithm 2 goes as follows. Let
W be a coarse partitioning, and W ′

1 and W ′
2 be two more

refined partitionings. If d(ΣW ,ΣW′
1
) > d(ΣW ,ΣW′

2
), then

one could argue that it is more interesting to chooseW ′
1 over

W ′
2, since the discounted measure between the behaviors

corresponding to the coarse partitioning and the refined parti-
tioning is larger. Moreover, if at some point ΣW is such that
Pw,w′ ∈ {0, 1} for all w,w′ ∈ An, then one has a sufficient
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condition to stop the algorithm following Proposition 1,
otherwise the algorithm stops after N iterations. If N =∞,
then the algorithm only stops in such case. An execution step
of the algorithm can be found in Figure 3. A complexity
analysis of Algorithm 2 can be found in Corollary 2.

Fig. 3: Illustration of the execution of Algorithm 2. Consider a current
partitioning W = {00, 01, 1}, with the corresponding abstraction ΣW .
Then the algorithm will explore the partitionings W ′

1 = {000, 001, 01, 1},
W ′

2 = {00, 010, 011, 1} and W ′
3 = {00, 01, 10, 11}. For each one, it

will compute ΣW′
i
, and d(ΣW ,ΣW′

i
), and choose the one for which the

distance to ΣW is the largest.

Corollary 2. The algorithm REFINE(S,N, ε) terminates in
O(|A|n+4N4) operations, with n = ⌈log2(ε−1)⌉. Moreover,
for S satisfying Assumption 1, if ΣW = REFINE(S,∞, ε)
terminates, then B(ΣW) = B(S).

C. Numerical examples

In this section, we demonstrate on an example that our
greedy algorithm converges to a smart partitioning2, and
we show how to use the proposed framework for controller
design.

Example 1. Consider S = (X,A, F,H) with X = [0, 2]×
[0, 1], A = {0, 1}. Let F be defined as

F (x) =


x if x ∈ P1 ∪ P4,

(x1/2 + 1/2, x2 + 1/2) if x ∈ P2,

(x1 − 1/2, x2) if x ∈ P3,

(2x1 + 1, 4x2 − 3/4) else,

where Pi are depicted in Figure 4, and H(x) = 0 if x ∈ P1,
else H(x) = 1. An illustration and interpretation of S is
given in Figure 4.

Fig. 4: Illustration and description of the transition function F of Example 1.
F has to be understood in the following way: P1 is mapped to itself, P2

is mapped to P3, the lower half of P3 is mapped to P4, the upper half of
P3 is mapped to P5, P5 is mapped to P1, and P4 to itself.

The result of the algorithm applied to Example 1 at all
iterations k is depicted in Table I, and the final partitioning is
illustrated in Figure 5. Observe that the generated partitioning

2All the code corresponding to this section can be found at https:
//github.com/adrienbanse/KantorovichAbstraction.jl.

aligns well with the dynamics, and that our algorithm gener-
ates an emerging structure which is not trivial. The algorithm
stops at the third iteration since the obtained abstraction
is such that Pw,w′ ∈ {0, 1}, which is a stopping criterion
following Proposition 1, and has much less states than the
brute force approach of [8].

W d(ΣW ,ΣW′
j
) Pw,w′ ∈ {0, 1}

k = 0 {0, 1} 0.0015 No
k = 1 {0, 10, 11} 0.0059 No
k = 2 {0, 10, 110, 111} 0.0039 No
k = 3 {0, 10, 110, 1110, 1111} - Yes

TABLE I: Results of Algorithm 2 for Example 1. For each iteration k, the
current model is the abstraction corresponding to ΣW , and the chosen model
is ΣW′

j
, with the largest distance d(ΣW ,ΣW′

j
). With P the transition

matrix of the current model, if for all w,w′ ∈ An, Pw,w′ ∈ {0, 1}, the
algorithm stops.

Fig. 5: Illustration of the last partitioning W given by Algorithm 2 for
Example 1.

We further demonstrate the quality of the obtained ab-
stractions by designing a controller for a similar dynamical
system.

Example 2. Consider the dynamical system S as described
in Example 1, except that the dynamics is controlled as
follows:

x̃k = xk +

(
0
1

)
uk, xk+1 = F (x̃k)

where uk = K(xk) ∈ {0, 1/4, 1/2} is an input to the system.
Consider the reward r(x) = 1 if H(x) = 0, else r(x) = 0,
and a discounted expected reward maximization objective,
that is

max
K

Ex1∼µ(X)

∑
k

γkr(xk), (7)

where µ(X) is the uniform distribution on X , and γ = 0.95
is a discount factor.

To solve this optimal control problem, we will use the
abstractions constructed by Algorithm 2. For each partition-
ing W in Table I, we will construct the abstraction Σu

W
corresponding to the actions given in Example 2, that is
u = 0, u = 1/4 and u = 1/2. We will then solve a
Markov Decision Process (or MDP for short, see [25] for an
introduction) maximizing the expected reward of the MDP.
For this, we used the implementation of the value iteration
algorithm implemented in the POMDPs.jl Julia package
[26]. Now, let P (s) be the optimal policy for the state s,
we design the controller for the system 2 as follows: for
xk ∈ [w]S , then

uk = K(xk) = P (w). (8)
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For the different abstractions found by Algorithm 2, the
corresponding expected rewards (7) for the original system
controlled by (8) are given in Table II. One can see that
the expected reward increases as our algorithm refines the
state-space.

Iteration Controller (8) Expected reward (7)

k = 0 K(x) =

{
0 if x ∈ [0]S
0 if x ∈ [1]S

14.4784

k = 1 K(x) =


0 if x ∈ [0]S
0 if x ∈ [10]S
1/4 if x ∈ [11]S

18.8726

k = 2 K(x) =


0 if x ∈ [0]S
0 if x ∈ [10]S
0 if x ∈ [110]S
1/4 if x ∈ [111]S

19.0311

k = 3 K(x) =



0 if x ∈ [0]S
0 if x ∈ [10]S
0 if x ∈ [110]S
1/2 if x ∈ [1110]S
1/4 if x ∈ [1111]S

19.1022

TABLE II: Expected rewards (7) for the Example 2 controlled by (8).
The iterations k correspond to the iterations of Algorithm 2 represented
in Table I. The optimal policy is found by solving MDPs corresponding
to the three possible actions uk ∈ {0, 1/4, 1/2}, and the expected reward
(7) is approximated by sampling 5000 trajectories of length 1000. One can
observe that the expected reward increases.

IV. CONCLUSION AND FURTHER RESEARCH

Inspired by a recent interest in developing data-driven
abstractions of dynamical systems, we proposed a state
refinement procedure that relies on a Kantorovich metric
between Markov chains. We leverage the Cantor distance in
the space of behaviours of the generated abstraction and use
it to define the proposed Kantorovich metric. A key feature of
our approach is a greedy strategy to perform state refinement
that leads to an adaptive and smart partition of the state space.
We show promising results in some control problems.

As further research, we plan to design a smart stopping
criterion for our refinement procedure. We would also like
to investigate convergence properties of our method, in the
same fashion as in [8, Theorem 8].
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