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Abstract— In this paper, we propose a new model reduction
technique for linear stochastic systems that builds upon know-
ledge filtering and utilizes optimal Kalman filtering techniques.
This new technique will reduce the dimension of the noise
disturbance and will allow any controller designed for the
reduced model to be refined into a controller for the original
stochastic system, while preserving any specification on the
output. Although initially the reduced model will be time-
varying, a method will be provided with which the reduced
model can become time-invariant if it satisfies some minor
technical conditions. We present our theoretical findings with an
example that supports the proposed framework and illustrates
how model reduction and controller refinement of stochastic
systems can be achieved. We finish the paper by considering
specific examples to analyze both completeness with respect to
controller synthesis and model order reduction with respect to
the state.

I. INTRODUCTION

Dynamical systems are becoming more complex, and
their tasks more diverse. Adding to this, the inherent uncer-
tainty of most real-life engineering systems [6], [12], [21],
makes developing correct-by-design controllers for stochastic
systems, i.e., controllers which ensure the satisfaction of
given tasks, an ever-expanding field of research. In the last
decade multiple computational tools on correct-by-design
control synthesis for stochastic systems have been developed
(AMYTISS [17], FAUST2 [20], StocHy [7] and SySCoRe
[22]) that can handle complex specifications such as those
expressed by temporal languages (LTL, sc-LTL, STL) [4],
[8]. These tools generally suffer from the curse of dimension-
ality, i.e., exponential growth in computational cost whenever
the state-space increases. It has been shown [13], [25] that
model reduction can mitigate this effect.

The reduction of dynamical models is a mature field in
control research. Often known as model order reduction,
the objective is to minimize the complexity of a system
while retaining some guarantee. For deterministic systems,
this includes, amongst others, guarantees on performance [2],
frequency domain [11], and structure [19] by utilizing, for
example, balanced truncation, rational Krylov and moment
matching, respectively. Less work exists that can guarantee
the satisfaction of complex specifications in the time domain.
Examples for deterministic systems include hierarchical con-
trol [10] and simulation relations [3]. For stochastic systems,
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this includes such work as (approximate) stochastic sim-
ulation relations [12], [13], stochastic simulation functions
[15], and stochastic bisimulation relations [18], [24]. These
notions allow higher-order (stochastic) systems to be simu-
lated by (finite- or) lower-order systems of (approximately)
the same type, all while retaining (approximate) equivalency
with regard to their state or output (distribution). For an
extensive list of model reduction techniques, see references
within [18].

Model reduction techniques considering complex temporal
specifications are also known as formal abstraction tech-
niques due to frequent usage within formal verification and
synthesis. Formal abstraction techniques mainly consists of
two components. The first component is the reduction (or
abstraction) procedure, which is a procedure that explains
how to simplify the original dynamics, thereby obtaining a
so-called (simplified) abstract model. The second component
is the controller refinement algorithm, which is an algorithm
that explains how a correct-by-design controller on the ab-
stract model can be refined into a correct-by-design controller
on the original dynamics.

In this paper, we will expand upon the existing literature
of formal abstraction by introducing a new model reduction
technique that reduces the dimension of the noise disturbance
on linear stochastic systems. Similar to the previously men-
tioned methods, we want to retain the satisfaction of any
temporal specification defined on the original system. Ac-
cordingly, we will develop a reduction procedure (abstraction
procedure) and a controller refinement algorithm. The reduc-
tion will consist of two steps: firstly, removing redundant
state information, referred to as knowledge filtering, which
yields a partially observable model, and secondly, computing
a reduced realization of this partially observable model via
optimal Kalman filtering [1]. More precisely, the second
step implements a weak Gaussian stochastic realization [23].
We will define a sound controller refinement algorithm and
discuss the completeness of the whole approach.

After formalizing the problem statement in Section II,
a time-varying abstraction will be obtained in Section III.
In Section IV, we explain how a time-invariant abstraction
can be forced, by considering some technical assumptions.
Several examples will be addressed in Section V, illus-
trating the reduction procedure and controller refinement
algorithm. It will also be shown that our method allows
for model reduction with respect to the state space where
previously mentioned methods are unable. This section will
also illustrate a lack of completeness regarding the controller
refinement, which can be attributed to the knowledge filtering
in the reduction procedure.
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II. PROBLEM SETUP

For a given probability measure P defined over Borel
measurable space (X,B(X)), we denote the probability of
an event A ∈ B(X) as P(A). In this paper, we will work
with Euclidean spaces and Borel measurability. Details of
any measurability considerations are omitted, and we refer
the interested reader to [5].

Linear Stochastic System. We consider a linear time-
invariant stochastic system M given by

M :

{
x(t+ 1) = Ax(t) +Bu(t) + w(t)

z(t) = Hx(t),
(1)

where x ∈ X ⊆ Rn is the state, u ∈ U ⊆ Rm is the input, z ∈
Z ⊆ Rp is the (performance) output, x(0) is the initial state
and is the realization of a Gaussian distribution with mean
µ0 and variance Σ0, i.e., x(0) ∼ N (µ0,Σ0), and disturbance
w(t) ∈ Rn is a realization of an independent, identically
distributed noise w(t) ∼ N (0, Qw). Finite executions of
M are alternating sequences of states and inputs ending
in a state, such as ωfin

N = x(0)u(0)x(1)u(1) . . . x(N −
1)u(N − 1)x(N), which satisfy equation (1) for some finite
noise sequence w = w(0)w(1)w(2) · · · , w(N − 1), where
x(0) ∼ N (µ0,Σ0) and w(t) ∼ N (0, Qw) for all t ∈
{0, 1, · · · , N−1}. We denote the history at time N as the set
of all finite executions of length N by EN ⊆ (X×U)N ×X.

In its most general setting, a controller C is a sequence
of policies C := C0C1C2 · · · , such that Ct : Et → U

is a map of the available history to the set of inputs.
The chosen control inputs are given by u(t) = Ct(ω

fin
t )

and the controlled stochastic system C × M is obtained
by composing C with M. We denote by Z := ZN the
set of all possible output trajectories associated with M.
Each execution of C×M will produce an output trajectory
z = z(0)z(1)z(2) · · · ∈ Z . The output trajectory z is a
realization of the probability distribution induced by the
controlled system C×M and denoted as z ∼ PC×M.

Stochastic Correct-by-Design Control Synthesis. Let us
consider the goal of designing a controller C that ensures
output trajectories of the controlled system C ×M satisfy
a given specification φ. We assume that each specification
φ corresponds to a Borel measurable subset of Z , denoted
by Zφ ∈ B(Z). Examples of such specifications include
specifications given in linear-time temporal logics [3]. Given
the stochastic nature of M, it is natural to require that
the specification φ is satisfied by the controlled system
C × M, with probability at least p. Let us denote the
satisfaction probability as PC×M(Zφ). Then, the objective
is to synthesize C such that PC×M(Zφ) ≥ p. We refer to
this as stochastic correct-by-design control synthesis.

Problem statement. To mitigate scaling issues such as
the curse of dimensionality in stochastic correct-by-design
control synthesis, we are interested in designing an abstract
model for which the stochastic control synthesis problem
is substantially simpler while also preserving correctness
to specifications defined on the output trajectories. More

precisely, our goal is to construct a noise reduced abstract
model M̄ such that for any correct-by-design controller C̄
synthesized for the abstract model M̄, a correct-by-design
controller C can be obtained for the original model M with
equal satisfaction probability, i.e.,

∀C̄ ∃C : PC̄×M̄(Zφ) = PC×M(Zφ). (2)

In the remainder, we constructively solve this problem.

III. ABSTRACTION AND CONTROL REFINEMENT:
TIME-VARYING ABSTRACTION

Consider a stochastic system M as given by (1). To solve
the stochastic correct-by-design control synthesis problem
in (2) while also simplifying the noise, we introduce the
abstraction procedure illustrated in Fig. 1 and the controller
refinement algorithm represented in Algorithm 1.

The abstraction procedure hinges on removing potential
redundant information from the original model M without
influencing the performance output z. The procedure is
executed in two steps. The first step filters knowledge from
M by introducing an observation output y(t) = Cx(t).
The result is a new stochastic system MObs that is partially
observable, or more specific, a partially observable Markov
decision process [16]. The second step replaces the partially
observable model with a fully observable equivalent model
via optimal Kalman filtering [1]. We refer to this fully
observable model as the abstract model M̄.

In the following, we will elucidate these steps for a time-
varying abstract model and show that the controller refine-
ment algorithm is valid. In the next section, we present some
technical conditions under which a time-invariant abstract
model can be obtained.

Fig. 1. The block diagram illustrates the abstraction procedure. The
distribution of v(t) depends on the distribution of y(t). K(t) is the time-
varying Kalman gain obtained from the Kalman filter equations.

A. Abstract Model Construction
Following the steps of the abstraction procedure Fig. 1,

we will construct the abstract model M̄. For the first step,
we choose a matrix pair C and N with C ∈ Rq×n and
N ∈ Rp×q , such that NC = H and q < n, and define the
partial observable version of the original model as

MObs :


x(t+ 1) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t)

z(t) = Ny(t),

(3)
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where x(0) ∼ N (µ0,Σ0), y(t) ∈ Rq is the observation
output, and w(t) ∼ N (0, Qw). For the second step, we
first introduce the needed optimal Kalman filtering tech-
niques for estimating the state of (3) based on observations
and inputs. We denote by xK(t|t) the expectation of x(t),
conditional on the available information at time t, that is,
xK(t|t) = E(x(t)|y(0)u(0)...u(t − 1)y(t)). Similarly, we
denote by P (t|t) the variance of x(t), again conditional
on the available information at time t, i.e., P (t|t) =
Var(x(t)|y(0)u(0) · · · y(t)). Quantities xK(t|t) and P (t|t)
are called, respectively, a posteriori state estimate and a
posteriori state variance. The term a posteriori is used
because all available information, including y(t), is utilized
in both definitions of xK(t|t) and P (t|t). The a priori
quantities xK(t|t− 1) and P (t|t− 1) are defined similarly,
but contrary to the a posteriori quantities, only consider the
available information up till u(t− 1). As is common, these
quantities can be determined as follows

xK(t|t) = xK(t|t− 1)

+K(t)[y(t)− CxK(t|t− 1)], (4a)
xK(t+ 1|t) = AxK(t|t) +Bu(t), (4b)

P (t|t) = P (t|t− 1)−K(t)CP (t|t− 1), (4c)

P (t+ 1|t) = AP (t|t)AT +Qw, (4d)

K(t) = P (t|t− 1)CT [CP (t|t− 1)CT ]−1, (4e)
xK(0| − 1) = µ0 and P (0| − 1) = Σ0. (4f)

We will make the following assumption to ensure equations
(4) are valid throughout this section.

Assumption 1: CΣ0C
T � 0 and CQwCT � 0, i.e., both

are strictly positive definite.
It is well known that the error between the a priori

prediction of the output, CxK(t|t − 1), and the measured
output y(t) defines a Gaussian white noise sequence [23].
This noise sequence is referred to as the innovation and
defined by

v(t) = y(t)− CxK(t|t− 1). (5)

The mean and variance of v can be computed directly, giving
µv(t) = 0 and Σv(t) = CP (t|t − 1)CT , see also [23,
Theorem 14.4.2]. The innovation allows us to define a new
linear stochastic system. This new system, referred to as the
a priori innovation process, builds on the a priori quantities
x̂(t) = xK(t|t− 1) and P̂ (t) = P (t|t− 1) and is given by

M̂ :


x̂(t+ 1) = Ax̂(t) +Bu(t) +AK(t)v(t)

y(t) = Cx̂(t) + v(t)

ẑ(t) = Ny(t),

(6)

where x̂(0) = µ0, v(t) ∼ N (0,Σv(t)), P̂ (0) = Σ0

P̂ (t+ 1) = AP̂ (t)AT +Qw −AK(t)CP̂ (t)AT ,

K(t) = P̂ (t)CT [CP̂ (t)CT ]−1, Σv(t) = CP̂ (t)CT .

Although this is the most commonly used version of the
innovation process, we will now define an alternative one
based on the a posteriori quantities x̄(t) = xK(t|t) and

P̄ (t) = P (t|t). We refer to this as the a posteriori innovation
process, and this will be our abstract model M̄, defined as

M̄ :


x̄(t+ 1) = Ax̄(t) +Bu(t) +K(t+ 1)v(t+ 1)

y(t) = Cx̄(t)

z̄(t) = Ny(t),

(7)

where x̄(0) ∼ N (µ0,Σ0 − P̄ (0)), (8a)

v(t) ∼ N (0,Σv(t)), Σv(t) = CP̂ (t)CT , (8b)

P̄ (t) = P̂ (t)−K(t)CP̂ (t), (8c)

P̂ (t+ 1) = AP̄ (t)AT +Qw, (8d)

K(t) = P̂ (t)CT [CP̂ (t)CT ]−1, (8e)

P̄ (0) = Σ0 − Σ0C
T [CΣ0C

T ]−1CΣ0. (8f)

In the appendix of the extended version of this paper [9],
additional information is given concerning the derivation of
both innovation processes. Finally, the definitive definition
of the abstract model is given by

M̄ :

{
x̄(t+ 1) = Ax̄(t) +Bū(t) +K(t+ 1)v(t+ 1)

z̄(t) = Hx̄(t),
(9)

together with the equations (8). The abstract model M̄ is a
weak Gaussian stochastic realization of MObs (3) as defined
in [23]. By construction, M and M̄ have the same state-
space dimension; however, the noise affecting the latter takes
value in an Euclidean space of smaller dimension, due to the
knowledge filtering in step 1. More precisely, the noise input
w(t) ∼ N (0, Qw) with w(t) ∈ Rn has been replaced with
the noise input K(t+ 1)v(t+ 1) with v(t+ 1) ∈ Rq , where
q < n. This reduction in complexity comes at the cost of
having a time-varying system. In the next section, we present
conditions under which the resulting M̄ is time-invariant.

B. Controller Refinement

What remains to be shown is that for any correct-by-design
controller C̄ designed for the abstract model, there exists a
correct-by-design controller C for the original model, see
equation (2). We use the auxiliary output y(t) = Cx(t) to
define the following controller refinement Algorithm 1 – its
implementation is depicted in the block diagram of Fig. 2.

Algorithm 1 Controller refinement algorithm
1: Given: M, M̄, C̄
2: set t := 0 and compute K(0) := Σ0C

T (CΣ0C
T )−1,

3: draw x(0) from N (µ0,Σ0),
4: compute x̄(0) = µ0 +K(0)(Cx(0)− Cµ0),
5: loop
6: obtain ū(t) according to C̄,
7: set u(t) = ū(t), { ← Implementing C}
8: draw x(t+ 1) from M and get y(t+ 1) = Cx(t+ 1),
9: compute v(t+ 1) = y(t+ 1)− CAx̄(t)− CBū(t),

10: compute x̄(t+1) = Ax̄(t)+Bū(t)+K(t+1)v(t+1)
11: take t = t+ 1.
12: end loop
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Fig. 2. A block diagram for the controller refinement (Algorithm 1)

The following theorem constitutes one of the main contri-
butions of this paper.

Theorem 1: Consider M and M̄ as given by, respectively,
(1) and (9) and assume that CΣ0C

T � 0 and CQwCT � 0.
Let φ be any specification described by Zφ ∈ B(Z). Then
∀C̄ ∃C such that PC̄×M̄(Zφ) = PC×M(Zφ).

Proof: Consider a controller C constructed based on
Algorithm 1. Using standard optimal Kalman filtering argu-
ments, one can show that, at every time step, the realization
of v(t + 1) in Algorithm 1 is uncorrelated with the current
state x̄(t+ 1) and has distribution given by (8b). Therefore,
the embedded model M̄ has the same output distribution as
M̄ in (9) when both are given the same input sequence.
Similarly, we claim that model M̄ in (9) and M have
the same output distribution when given the same input
sequence. The proof of this claim can be found in the
appendix of the extended paper [9]. Hence, the embedded
model M̄ has the same output distribution as M when both
are given the same input sequence. This finishes the proof,
as PC̄×M̄(Zφ) = p, now implies PC×M(Zφ) = p.

IV. ABSTRACTION AND CONTROL REFINEMENT:
TIME-INVARIANT CASE

In this section, we investigate sufficient conditions to
obtain a time-invariant abstract model based on the abstrac-
tion procedure explained in Section III-A. From the block
diagram in Fig. 2, one may deduce that a time-invariant
model is derived if, amongst others, a time-invariant Kalman
gain is employed.

A. Abstract Model Construction

As explained in the sequel, towards obtaining a time-
invariant abstract model M̄, we need to define the following
algebraic equation.

Definition 2 (Discrete Algebraic Ricatti Equation [14]):
The discrete-time algebraic Ricatti equation (DARE) adapted
to the model (3) is given by

X = AXAT −AXCT [CXCT ]−1CXAT +Qw. (10)

We say that X � 0 is a stabilizing solution to the DARE, if
A− FC is stable for F = AXCT (CXCT )−1.
In case the variance of the initial condition (denoted by Σ0)
is a stabilizing solution to the algebraic Ricatti equation in

(10), we have that P̂ (t) = Σ0 in (8), i.e., the a priori state
variance becomes constant. As a result the abstract model (9)
will be time-invariant, which is formalized by the following
lemma.

Lemma 3: Assume that CΣ0C
T � 0. If Σ0 = X � 0 is

a stabilizing solution to (10), then the abstract model (9) is
time-invariant and given by

M̄ :

{
x̄(t+ 1) = Ax̄(t) +Bū(t) +Kv(t+ 1)

z̄(t) = Hx̄(t)
(11)

where x̄(0) ∼ N (µ0, X − P ), v̄(t) ∼ N (0, CXCT ),

K = XCT [CXCT ]−1, P = X −KCX.
The main advantage of Lemma 3 is the guarantee of

the abstract model (11) being time-invariant, contrary to the
abstract model (9), which may be time-varying. Regrettably,
most real-life engineering systems do not yield the result
of Lemma 3, as, generally, Σ0 will not solve (10). To
alleviate this issue, we will consider a relaxed version that
requires instead that Σ0 − X � 0, with X � 0 being
the stabilizing solution to (10). Accordingly, we have the
following assumption for the remainder of this subsection.

Assumption 2: CXCT � 0 and Σ0−X � 0 with X � 0
being the stabilizing solution to (10).

To obtain a time-invariant abstract model based on the
above assumption, we again consider the abstraction pro-
cedure explained in Section III-A. While step 1 remains
the same, step 2 will be changed slightly. An additional
observation ỹ = x(0) + w̃, where w̃ ∼ N (0, R), will be
added at time t = 0. This will allow for modification of
the a posteriori quantities of x(0), xK(0|0) and P (0|0),
before continuing the abstraction procedure by utilizing the
Kalman filter equations (4), excluding (4f). The goal is to
ensure that P (0|0) = X − XCT [CXCT ]−1CX implying
that P (t + 1|t) = X , ∀t ∈ {0, 1, 2, . . . } in (4). This will
make the a posteriori innovation process time-invariant. To
accomplish this, we take R = (X−1 − Σ−1

0 )−1. The result
will be an abstract model M̄∗, given by

M̄∗ :

{
x̄(t+ 1) = Ax̄(t) +Bū(t) +Kv(t+ 1)

z̄(t) = Hx̄(t)
(12)

where x̄(0) ∼ N (µ0,Σ0 − P ), v(t) ∼ N (0, CXCT )

K = XCT [CXCT ]−1, P = X −KCX.

Note that M̄∗ differs from the abstract model (11) only in the
initial distribution. See the appendix of the extended paper
[9] for a more detailed explanation on how to obtain M̄∗.

B. Controller Refinement

Under the conditions of Lemma 3, Algorithm 1 will again
give a valid controller refinement algorithm and Theorem 1
can be rephrased as follows.

Corollary 4: Consider M and M̄ as given by, respec-
tively, (1) and (11) and assume that Σ0 � 0 is a stabilizing
solution to (10), and CΣ0C

T � 0. Let φ be any specifi-
cation described by Zφ ∈ B(Z). Then ∀C̄ ∃C such that
PC̄×M̄(Zφ) = PC×M(Zφ).
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Should instead abstract model M̄∗ be considered,
Algorithm 1 needs to be slightly modified, resulting in
Algorithm 2. Note that Algorithm 2 uses an auxiliary step
to ensure the initialization is resolved correctly.

Algorithm 2 Controller refinement algorithm.
1: Given: M, M̄∗, C̄∗

2: set t := 0 and compute L = Σ0[Σ0 +R]−1,
3: draw x(0) from N (µ0,Σ0) and draw w̃ from N (0, R),
4: compute µ̄0 = µ0 + L(x(0) + w̃ − µ0),
5: compute x̄(0) = µ̄0 +K(Cx(0)− Cµ̄0),
6: loop
7: obtain ū(t) according to C̄∗,
8: set u(t) = ū(t), { ← Implementing C}
9: draw x(t+ 1) from M and get y(t+ 1) = Cx(t+ 1),

10: compute v(t+ 1) = y(t+ 1)− CAx̄(t)− CBū(t),
11: compute x̄(t+ 1) = Ax̄(t) +Bū(t) +Kv(t+ 1)
12: take t = t+ 1.
13: end loop

Based on Algorithm 2, we can now extend the result of
Theorem 1 to the abstract model M̄∗.

Theorem 5: Consider M and M̄∗ as given by, respec-
tively, (1) and (12). Let X � 0 be a stabilizing solution
to (10), and assume that Σ0 − X � 0 and CXCT � 0.
Let φ be any specification described by Zφ ∈ B(Z). Then
∀C̄∗ ∃C such that PC̄∗×M̄∗(Zφ) = PC×M(Zφ).

Proof: The proof follows from Algorithm 2, similar to
Theorem 1 only now with two initial measurements.

Remark 1: Due to the knowledge filtering in step 1 of the
abstraction procedure, in general, Theorem 1, Corollary 4
and Theorem 5 do not hold when reversing the statement,
that is, the existence of C such that PC×M(Zφ) = p does
not imply existence of C̄ such that PC̄×M̄(Zφ) = p. This
will be further illustrated in the following section.

V. STOCHASTIC CORRECT-BY-DESIGN CONTROL
SYNTHESIS: EXAMPLES

In this section, we will consider an example to illustrate
the abstraction procedure and the controller refinement al-
gorithm. Another example will show that model reduction
with respect to the state can be achieved, under the right
conditions, where previous existing methods are inadequate.
Finally, we will illustrate that, by filtering knowledge, we
may construct an abstract model for which synthesis of a
correct-by-design controller is not possible.

Example 1: Consider the discrete-time stochastic system

M :


x(t+ 1) =

0 0 0

1 0 0

0 1 0

x(t) +

0

0

1

u(t) + w(t)

z(t) =
[
0 0 1

]
x(t),

(13)

where x(0) ∼ N (0,Σ0) and w ∼ N (0, Qw) with

Σ0 =
[

5 0 0
0 5 0
0 0 5

]
and Qw =

[
1 0 0
0 1 0
0 0 0.05

]
.

Let φ be a temporal specification, which requires z to be
within [−1, 1] over the interval [1, 100]. We aim to design a
controller C such that PC×M(Zφ) ≥ 0.95.

Let us construct an abstract model M̄1 utilizing infor-
mation from the second and third state, that is, let C1 =[
0 1 0
0 0 1

]
and N1 =

[
0 1

]
, and notice that [0 0 1] =

N1C1, satisfying the condition H = NC. Let X =[
1 0 0
0 2 0
0 0 0.05

]
be the solution to (10) associated with M, and

observe that Σ0 − X � 0 and C1XC
T
1 � 0. The abstract

model is obtained from (12) and given by

M̄1 :

{
x̄1(t+ 1) =

[
0 0 0
1 0 0
0 1 0

]
x̄1(t) +

[
0
0
1

]
ū1(t) +

[
0 0
1 0
0 1

]
v1(t)

z̄1(t) = [ 0 0 1 ]x̄1(t)

where x̄1(0) ∼ N (0,
[

4 0 0
0 5 0
0 0 5

]
) and v1 ∼ N (0, [ 2 0

0 0.05 ]).
Notice that this abstract model is time-invariant.

For M̄1 to satisfy the specification, take C̄1 : ū1(t) =[
0 −1 0

]
x̄1(t). The result will be that z̄1(t) =[

0 1
]
v1(t+ 1), that is, z̄1(t) ∼ N (0, 0.05). Using the cu-

mulative distribution function ofN (0, 0.05), we can compute
that P(z̄1(t) /∈ [−1, 1]) = 7.744e-6 for all t ∈ [1, 100]. This
implies that P(z̄1 /∈ Zφ) = 7.741e-4 and PC̄1×M̄1

(Zφ) >
0.95. To obtain controller C1, we utilize Algorithm 2. In Fig.
3, the result of applying Algorithm 2 is shown.

Fig. 3. The performance output of the original- and embedded abstract
model over a horizon t ∈ [0, 100], when applying Algorithm 2.

The above example illustrates that the proposed abstrac-
tion procedure yields a simplified system in regard to the
noise and the controller refinement algorithm will produce
a correct-by-design controller for the original model. Even
though we considered a simple specification in this example,
these results remain unaltered for more complex properties.
Similarly, a trivial control design was used in this example,
but should any other correct-by-design controller on the
abstract model be used, these results remain again unaltered.
Model Reduction with respect to the State. We now
investigate model reduction with respect to the state.

Example 2 (continued from Ex. 1): Assume Σ0 = X , a
stabilizing solution to (10). Inspired by Lemma 3, consider
the abstract model

M̄2 :

{
x̄2(t+ 1) =

[
0 0 0
1 0 0
0 1 0

]
x̄2(t) +

[
0
0
1

]
ū2(t) +

[
0 0
1 0
0 1

]
v2(t)

z̄2(t) = [ 0 0 1 ]x̄2(t)

where x̄2(0) ∼ N (0,
[

0 0 0
0 2 0
0 0 0.05

]
) and v2 ∼ N (0, [ 2 0

0 0.05 ]).
Due to its structure, system M̄2 can be reduced to

M̄2,r :

{
x̄2(t+ 1) = [ 0 0

1 0 ]x̄2(t) + [ 0
1 ]ū2(t) + v2(t)

z̄2(t) = [ 0 1 ]x̄2(t)
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where x̄2(0) ∼ N (0, [ 2 0
0 0.05 ]) and v2 ∼ N (0, [ 2 0

0 0.05 ]).
Utilizing the lower dimensional system M̄2,r, we obtain the
correct-by-design controller C̄2 : ū2(t) =

[
−1 0

]
x̄2(t),

after which we use Algorithm 1 to obtain controller C2.
It is important to note that the above reduction cannot

be quantified by existing simulation relations such as [13],
[15], [18]. This makes our method a promising new model
reduction technique, but for which further research is still
necessary. Notice that in Algorithm 1, a minor modification
needs to be made based on the obtained reduced model. For
instance, in the above example, one must remove the first
element of x̄(t) before feeding the remainder to C̄2.
Lack of Completeness. The proposed framework is not
complete. Due to our choice of knowledge filtering, the
original problem might become oversimplified to such a
degree that no correct-by-design controller can be obtained
for the abstract model. However, this failure to design a
controller using the abstract model does not imply that the
specification cannot be enforced on the original dynamics.

Example 3 (continued from Ex. 1): Consider again the
linear time-invariant stochastic system (13) with constraint
PC×M(Zφ) ≥ 0.95. Consider now matrices C2 =[
0 0 1

]
and N2 = 1, which leads to the following

abstract model

M̄3 :

{
x̄3(t+ 1) =

[
0 0 0
1 0 0
0 1 0

]
x̄3(t) +

[
0
0
1

]
ū3(t) +

[
0
0
1

]
v3(t)

z̄3(t) = [ 0 0 1 ]x̄3(t)

where x̄3(0) ∼ N (0,
[

4 0 0
0 3 0
0 0 5

]
) and v3 ∼ N (0, 2.05).

For M̄3, no controller C̄3 exist such that PC̄3×M̄3
(Zφ) ≥

0.95, since maximizing the probability satisfaction of the
specification φ leads to the controller C̄3 : ū3(t) =[
0 −1 0

]
x̄3(t), resulting in z̄3(t) ∼ N (0, 2.05). Using

the cumulative distribution function again, we can numeri-
cally compute that PC̄3×M̄3

(Zφ) = 1.543e-29. This means
no controller for M̄3 can enforce specification φ. However,
previously, we have shown how to enforce this specification
for a more complex abstract model. Hence, examples 1 and
3 clearly illustrate that while both abstract models simplify
the stochastic control synthesis problem, oversimplification
may prevent us from finding an adequate controller.

VI. CONCLUSION

In this paper, we proposed a model reduction technique
on the noise disturbance, whereby a simpler representation
of the original dynamics is obtained by means of reducing
state information, which we called knowledge filtering, and
via optimal Kalman filtering. We introduce the abstraction
procedure, which, under some technical conditions, may lead
to a time-invariant abstract model. Our controller refinement
algorithm is constructive and allows for the design of correct-
by-design controllers on the original dynamics via correct-
by-design controllers on the abstract model. We finished
the paper by illustrating the abstraction procedure and the
controller refinement, by showing how our reduction method
can achieve model reduction on the state space, which exist-
ing methods, such as those employing simulation relations,

cannot realize, and by examining the completeness of our
technique.
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