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Abstract

In this paper, we present a novel data-driven approach to quantify safety for non-linear, discrete-time stochastic systems
with unknown noise distribution. We define safety as the probability that the system remains in a given region of the state
space for a given time horizon and, to quantify it, we present an approach based on Stochastic Barrier Functions (SBFs). In
particular, we introduce an inner approximation of the stochastic program to design a SBF in terms of a chance-constrained
optimisation problem, which allows us to leverage the scenario approach theory to design a SBF from samples of the system
with Probably Approximately Correct (PAC) guarantees. Our approach leads to tractable, robust linear programs, which
enable us to assert safety for non-linear models that were otherwise deemed infeasible with existing methods. To further
mitigate the computational complexity of our approach, we exploit the structure of the system dynamics and rely on spatial
data structures to accelerate the construction and solution of the underlying optimisation problem. We show the efficacy
and validity of our framework in several benchmarks, showing that our approach can obtain substantially tighter certificates
compared to state-of-the-art with a confidence that is several orders of magnitude higher.

1 Introduction

Safety-critical applications, such as autonomous driv-
ing [39] and robotics [26] require provable guarantees
of safety, as undesirable behaviours may lead to catas-
trophic outcomes with long-term economic costs. As a
consequence, asserting the safety of complex non-linear
noisy systems has been the focus of many recent ap-
proaches [32], [1], [36], [11], [23], [42]. However, these
approaches generally suffer from exponential complex-
ity with respect to the dimension of the state space. Be-
sides, generally, these approaches require that the distri-
bution of the noise affecting the system is either known
and Gaussian or of bounded support [36], [32]. Unfortu-
nately, in practice, the noise characteristics of the system
are often not known [1], [4], [34]. This leads to the main
question of this paper: how can we compute formal cer-
tificates of safety for non-linear stochastic systems with
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unknown noise distribution?

Following the existing literature [36], [40], [2], we define
safety as the probability that the system will remain
within a given safe set for a given time horizon. Common
approaches to quantify safety for non-linear stochastic
systems either rely on formal abstraction methods [3], [8]
or on Stochastic Barrier Functions (SBFs) [36], [40], [27].
Abstraction-based methods build a discrete representa-
tion (i.e., a variant of a Markov chain) of the underlying
stochastic system via the discretisation of its state space
[3], [8]. Then, value iteration is performed on such repre-
sentation to verify properties and synthesise controllers,
which can be mapped back on the original system by re-
lying on simulation relations between the discrete repre-
sentation and the underlying system [17], [14]. Various
approaches have been proposed that combine abstrac-
tions and data-driven methods, including distribution-
ally robust methods [15], the scenario approach [3], [4],
Chernoff bounds [24], and Gaussian process regression
[19]. However, a common drawback of these approaches
is the need to partition (or discretise) the state space of
the original stochastic system and to solve the value iter-
ation on the resulting discrete abstraction, which leads
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to the well-known state-space explosion problem [8].

In contrast, SBFs [40], [21], [31] are Lyapunov-like func-
tions, whose level sets allow one to bound the proba-
bility that a dynamical system will remain safe for a
given time horizon, without the need to explicitly evolve
the system over time [36], [40], [20]. By not requiring
an analytical solution to the system’s governing equa-
tions over time, SBFs represent a promising technique
to efficiently quantify the safety of stochastic systems.
However, one of the main challenges in SBF design, as
we are interested in quantitative (rather than binary)
safety evaluation, is in finding a SBF that does not lead
to overly conservative results [22], [10]. In fact, designing
a SBF requires the solution to a stochastic optimisation
problem whose nature depends on the class of dynamics
under study. In literature, synthesis of SBFs is usually
performed with convex optimisation, in particular sum-
of-squares (SoS) optimisation [32], [20], [36] and Linear
Programming (LP) for piece-wise constant SBFs [29], or
with deep learning [27]. However, these papers make re-
strictive assumptions on the noise distribution and on
the system dynamics, e.g. Gaussian noise and linear or
polynomial dynamics, are often enforced [15], [33]. More
recently, some papers relax the assumption on the noise
distribution by means of data-driven approaches [34],
[35], which in addition to the level of safety also induces a
(formally quantified) confidence. In particular, [34] uses
Sample Average Approximation (SAA) to synthesise a
SBF. This alternative approach, however, suffers from
a sample complexity that is linear in the inverse of the
confidence. Recent work on synthesising SBFs purely
from trajectory data [38], i.e., without assuming partial
knowledge of the dynamics, has used Conditional Mean
Embeddings, whose bottleneck is a computational com-
plexity of O(N3) where N is the number of samples.

Our approach departs from previous techniques to en-
sure safety for non-linear stochastic dynamical systems
using SBFs. First, we present an inner approximation to
the stochastic program commonly used to design SBF
in terms of a chance-constrained optimisation problem.
The feasible set of the latter is contained in the feasi-
ble set of the former. Then, by restricting to the class
of piece-wise affine stochastic barrier functions 2 and re-
lying on uncertain linear relaxations of non-linear sys-
tems [43], we show that the resulting chance-constrained
problem can be reformulated into a robust LP problem
[6]. This reformulation allows us to employ the scenario
approach theory to devise a data-driven framework to
synthesise a SBF, and consequently obtain safety guar-
antees to the trajectories of the system. The resulting
approach is data-efficient, as it only requires a limited
amount of samples from the noise distribution that is log-
arithmic in the negative inverse of the confidence, which

2 It is known that with sufficiently many pieces a piece-
wise affine function can formally approximate any continuous
function arbitrarily well.

is in contrast with [34] where, as previously mentioned,
the sample complexity is instead proportional in the in-
verse of the confidence. Furthermore, our approach is
scalable due to its LP representation. We also introduce
an a priori sample discarding procedure and spatial in-
dexing for efficient model construction to improve scala-
bility of the proposed framework. Our experiments show
competitive performance on various systems, including a
model of a vehicle in windy conditions and various Neu-
ral Network Dynamical Models (NNDMs) [30]. Our nu-
merical analysis illustrates how our approach substan-
tially outperforms state-of-the-art comparable methods
in terms of both the tightness of bounds and the amount
of data required. Overall, our main contributions are:

• We develop a data-driven technique for the design of
barrier functions that relies on a chance-constrained
inner approximation of stochastic programs.
• We use the scenario approach theory and Linear

Bound Propagation techniques to synthesize a SBF
for non-linear dynamical systems.
• We present an efficient computational architecture to

construct the resulting optimisation problem using
spatial indexing methods, such as R-trees, for faster
set intersection computations.
• We benchmark the proposed framework, showing its

advantages with respect to approaches in the litera-
ture, including instances of Neural Network Dynami-
cal Models (NNDMs).

A conference version of this paper appeared in [28]. This
paper significantly expands the preliminary results in
[28], which focused on developing data-driven SBF syn-
thesis techniques only for piece-wise affine (PWA) dy-
namics. In this paper, we deal with general non-linear
dynamics, which necessitates non-trivial extensions of
the techniques in [28] to handle uncertain PWA models.
Furthermore, here we show how to leverage spatial in-
dexing and sample discarding to enhance scalability of
our framework. We also newly include detailed proofs,
as well as a substantially extended empirical analysis,
including experiments on NNDMs.

The structure of this paper is as follows. The problem
statement is described in Section 2. Section 3 covers
preliminary results from convex analysis, scenario opti-
misation, and piece-wise affine relaxations of non-linear
functions. Section 4 defines piece-wise linear SBFs and
how they can be used to certify safety for non-linear
stochastic systems. Section 5 details the main theoret-
ical results, including a reformulation of the stochas-
tic program to synthesise a SBF in to an inner chance-
constrained approximation. In Section 6, we apply sce-
nario approach theory towards a data-driven synthe-
sis of a PWA SBF. In Section 7 we show how to com-
pute the necessary polyhedral over-approximations and
two methods to improve the scalability, namely the con-
vex hull over sample set and spatial indexing. Empirical
studies are reported in Section 8.
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2 Problem formulation

2.1 Notation

Let R, R≥0, and N represent, respectively, the set of real,
non-negative real, and natural numbers. We denote by
{x1, . . . , xm} the elements in a finite set. Let Ω be an
abstract space, F be a σ-algebra defined on this set, and
P be a probability measure; we denote by (Ω,F ,P) the
associated complete probability (or uncertainty) space.
A random η variable with values in Rn is a measurable
function η : Ω 7→ Rn, with Rn equipped with its stan-
dard Borel σ-algebra. A realisation of η is denoted by
η(ω), for some ω ∈ Ω. For a given set Ω, we denote by
P(Ω) the set of probability measures defined over Ω. The
supremum norm ∥·∥∞ on a function f : Rn 7→ R is de-
fined as ∥f∥∞ = supx∈Rn |f(x)|.

2.2 Problem formulation

We consider the following discrete-time, stochastic non-
linear system

x(k + 1) = f(x(k)) + η, x(0) = x̄, (1)

where k ∈ N denotes time, x̄ ∈ Rn is the initial condi-
tion, and f : Rn 7→ Rn is a Lipschitz continuous func-
tion. η is a random variable defined on the probability
space (Ω,F ,P) and, at each time instance, an indepen-
dent realization is drawn and added to the nominal dy-
namics represented by the function f (independent and
identically distributed (i.i.d.)). We further assume that
the probability distribution of η is absolutely continuous
with respect to the Lebesgue measure of Rn for a well-
defined probability density function. Throughout this
paper, we assume that the probability distribution of η
is unknown.

Because of the i.i.d. assumption on η, we can alterna-
tively write the dynamics of System (1) using its kernel
representation. A stochastic kernel is a measurable map
from Rn onto the space of probability measures P(Rn),
T : Rn 7→ P(Rn) [5]. In particular, the stochastic kernel
associated with System (1) is given by

T (X | x) =
∫
Ω

1X(f(x) + η(ω))P(dω), (2)

where X ⊂ Rn is a Borel set of Rn, and 1X is the indica-
tor function, i.e., 1X(x) = 1 if x ∈ X, and 0 otherwise.
In other words, for a fixed x ∈ Rn representing the cur-
rent state, the stochastic kernel associated with System
(1) returns the probability distribution of the state in
the next time step. For K ∈ N and x̄ ∈ Rn, we denote
by (Rn)K = Rn× . . .×Rn the K-fold Cartesian product
of Rn. Then, the stochastic kernel (2) induces a unique
measure on (Rn)K given by the unique extension (due

to Kolmogorov’s extension theorem [41, Theorem 2.4.3])
of the measure

Px̄(X1, . . . , XK) =

∫
X1

(
K∏

k=2

∫
Xk

T (dξk|ξk−1)

)
T (dξ1 | x̄),

which represents the probability of a trajectory starting
at x̄, under the dynamics of System (1), being in the set
Xk, k = 1, . . . ,K at the various time steps. We now have
all the ingredients to define the notion of probabilistic
safety that is crucial to our approach.

Definition 1 (Probabilistic safety [2]). Let K be a non-
negative integer and Xs ⊆ X be a compact set repre-
senting the safe set. Then, for a given initial state x̄, we
define probabilistic safety as

ζ(Xs,K | x̄) = Px̄(Xs, . . . , Xs).

Our main objective in this paper is to obtain a uniform
lower bound on the probabilistic safety of System (1) for
all initial conditions in a given set X0.

Problem 1. Let D = (ω1, ..., ωN ) be i.i.d. samples from
η. Then, for a given compact set X0 ⊆ X, a safe set
Xs ⊆ X, and a time horizon K ∈ N, find ρ ∈ (0, 1] such
that, with high confidence,

ζ(Xs,K) = inf
x̄∈X0

ζ(Xs,K | x̄) ≥ ρ.

Note that, as the noise is additive, the assumption of
having i.i.d. noise samples in Problem 1 is equivalent to
having i.i.d. full measurements of the state. Exact com-
putation of probabilistic safety for System (1) is gen-
erally infeasible, even when η is restricted to being a
Gaussian random variable [8]. Consequently, it is obvi-
ous that the more general setting considered in this pa-
per, where the noise distribution is arbitrary and possi-
bly unknown, requires approximations. We should also
stress that, while in Problem 1 we focus on safety, the
techniques developed in this paper to obtain its solution
can also be applied to perform verification of more com-
plex temporal properties. In fact, safety is the dual to,
and can be reformulated as, reachability[2] 3 , and com-
plex temporal specifications such as LTLf [12] can be
reduced to reachability by representing the formula as
an automaton and checking reachability to an accepting
state of the product system between the automaton and
the system [23], [20], [17].

Approach We leverage the availability of data D to
synthesise a Stochastic Barrier Function (SBF) that,

3 The safety probability is one minus the probability of
reaching the unsafe set.
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Stochastic
Barrier Program

(BP )

Chance-constrained
Barrier Program

(CCBP )

(Finite) Scenario
Barrier Program

(FSBP )

Theorem 1

Theorem 2

Uncertain
Chance-constrained
Barrier Program

(UCCBP )

Corollary 1

Fig. 1. Summary of the proposed framework for safety ver-
ification of nonlinear systems. Theorem 1 (Section 5) guar-
antees that the associated stochastic program to find a SBF
can be solved as a chance-constrained program via constraint
tightening. Non-linearities can be dealt with by means of a
PWA abstraction as in Theorem 2 (Section 5.1). The scenario
approach is applied to use available data for high-confidence
certificates; strong duality is essential to relax the problem
to Linear Programming in Corollary 1 (in Section 6).

with high confidence, bounds probabilistic safety. Our
approach is summarised in Figure 1 and is based on a
novel reformulation of the optimisation problem to find
a SBF into a chance-constrained problem (detailed in
Section 5). To deal with the non-linearity of a system,
we develop in Section 5.1 a formal (i.e. with a quanti-
fied error) approximation of System (1) as an uncertain
piece-wise affine (PWA) system. Such an approxima-
tion is then used in Section 6 to reformulate the chance-
constrained problem into a robust linear program, which
can be efficiently solved using duality.

3 Preliminaries

Our approach requires some results from convex optimi-
sation and scenario optimisation, which we summarise
below for convenience.

3.1 Convex analysis and linear programming

A class of convex sets that will be widely used in this
paper is the class of polyhedral sets [25]. Given a matrix
H ∈ Rp×n and a vector h ∈ Rp, a polyhedral set is
denoted by

P = {x ∈ Rn : Hx ≤ h}. (3)

Representation (3) is called the half-space representation
of polyhedral sets. The vertex representation of P is P =
conv(x1, . . . , xm) where vert(P ) = {x1, . . . , xm} are the
vertices 4 of P .

4 Formally, an element x of a convex set C is called a vertex
if whenever x = λx1 + (1 − λ)x2 for some λ ∈ (0, 1) and
x1, x2 ∈ C, we have that x1 = x2.

The following class of robust, or semi-infinite, LPs is
crucial to our developments:

min
z

c⊤z

s. t. (Az + a)⊤x ≤ Bz + b, for all x ∈ P,
(4)

where z ∈ Rd is the vector of decision variables of size
d ∈ N, c ∈ Rd is the objective cost, A ∈ Rn×d, a ∈ Rn,
B ∈ R1×d, b ∈ R are constraint coefficients, and P ⊂
Rn is a polyhedral set. By relying on standard duality
arguments, we can recast the semi-infinite optimisation
problem (4) as a regular LP as shown in the following
proposition.

Proposition 2 ([6, Exercise 5.17]). Consider the semi-
infinite LP problem (4), and denote by

Z = {z ∈ Rd : (Az + a)⊤x ≤ Bz + b, for all x ∈ P},

its feasible set. Define the optimisation problem

min
z,λ

c⊤z

s. t. h⊤λ ≤ Bz + b

H⊤λ = Az + a, λ ≥ 0, (5)

whose feasible set is given by

Z ′ = {z : ∃λ ∈ Rp
≥0, h

⊤λ ≤ Bz + b, H⊤λ = (Az + a)}.

Then, it holds that Z = Z ′.

3.2 Scenario optimisation

The scenario approach theory allows one to certify
the probability of constraint violation associated with
chance-constrained optimisation problems [7]. Let
η : Ω 7→ Rq be a random variable on the probabil-
ity space (Ω,F ,P). Let D = (ω1, . . . , ωN ) be i.i.d.
samples from P, which live naturally in the space
(ΩN ,⊗NF ,PN ), where ΩN is the N -fold Cartesian
product of Ω, and ⊗NF is the product sigma algebra
generated by the sigma algebra F , and PN represents
the induced measure on ΩN . Then, consider the scenario
program

min
z

c⊤z

s. t. g(z, η(ω)) ≤ 0, for all ω ∈ D, (6)

where d is the dimension of the optimisation variables,
c ∈ Rd is the objective cost, and g(z, η) : Rd × Rq is
a function that is convex in z for each value of η and
measurable in η for each value of z. Notice that the sce-
nario program (6), by enforcing one convex constraint
per sample in D, is convex program and consequently, it
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can be solved using convex optimization tools [13], [18].

Assumption 1. We assume almost surely with respect
to the measure PN that:

a. The feasible set Z = {z : g(z, η(ω)) ≤ 0,∀ω ∈ D} has
non-empty interior.

b. The optimal solution of program (6) exists and is
unique.

Both conditions in Assumption 1 are standard. In fact,
uniqueness can always be enforced with a tie-break rule.
Throughout this paper, we denote the unique solution
of (6) by z⋆(D), which is a well-defined random vari-
able on the space ΩN . A key result within the scenario
approach theory establishes an upper bound on the tail
distribution of the constraint violation probability asso-
ciated with z⋆(D).

Proposition 3 ([7]). Consider the scenario program (6)
and suppose Assumption 1 holds. Then, for any ϵ ∈ (0, 1),
we have that

PN{D ∈ ΩN : V (z⋆(D)) > ϵ} ≤
d−1∑
i=0

(
N

i

)
ϵi(1− ϵ)N−i,

where V (z) = P{ω ∈ Ω : g(z, η(ω)) > 0} is the violation
probability of z ∈ Rd.

The inequality in Proposition 3 holds with equality for
the class of fully-supported scenario programs – the
reader is referred to [7] for more details.

3.3 Uncertain piece-wise affine relaxations

Uncertain PWA relaxations, as depicted in Fig. 2, are
key to our method. This type of relaxation allows one
to treat complex non-linear functions as uncertain PWA
functions, simplifying analysis and optimisation. An un-
certain PWA relaxation for a function f is a collection
of local linear relaxations, that is, Aix + bi ≤ f(x) ≤
Aix + bi for all x in a convex region Qi, given a par-
tition Q = {Q1, . . . , Qℓ}. We call a partition convex if
each region in the partition is convex. The union of all
regions

⋃ℓ
i=1 Qi is the domain of the relaxation. We note

that any locally Lipschitz function f can be relaxed to
an uncertain PWA function [9]. The idea is to partition
the input domain into a number of regions and compute
linear relaxations independently for each region. We for-
malise the existence of an uncertain PWA relaxation in
what follows.

Proposition 4. Let Q = {Q1, . . . , Qℓ} be a given con-
vex partition of a compact set X ⊂ Rn. Then, for any
function f : Rn → Rn that is locally Lipschitz on X,

x

x3

x

x3 + x

Output

Fig. 2. Computation graph for the function f(x) = x3 + x
with Linear Bound Propagation (LBP) annotation for the
input regions [−1, 0] and [0, 1]. LBP operates by propagating
backward linear bounds on the computation graph.

there exists an uncertain PWA function

f̂(x, α) = f̂i(x, α) = Ai(α)x+ bi(α), for x ∈ Qi ⊆ X

where α ∈ [0, 1] and

Ai(α) = αAi + (1− α)Ai, bi(α) = αbi + (1− α)bi

with matrices Ai, Ai ∈ Rn×n and vectors bi, bi ∈ Rn

given for all Qi ∈ Q, such that it holds that f(x) ∈
{f̂(x, α) : α ∈ [0, 1]} for all x ∈ X.

A proof for the proposition can be found in Appendix
A.2. Note that there are various possible approaches to
select matrices Ai, Ai and vectors bi, bi for each region
Qi. In this paper, we use a state-of-the-art technique,
called Linear Bound Propagation (LBP) [43]. The core
idea of LBP is to recursively propagate linear bounds
backward through the computation graph representing
a function. An example of this bound propagation pro-
cedure can be seen in Fig. 2 where the cubic term is lin-
early bounded based on the input interval bounds and
composed with the linear term.

4 Stochastic barrier functions

In this paper, we use Stochastic Barrier Functions [32]
to provide safety guarantees for System (1).

Definition 2 (Stochastic Barrier Function). Given a
safe setXs and a set of initial conditions X̄, a measurable
function B : Rn 7→ R≥0 is called a Stochastic Barrier
Function (SBF) for System(1) if there exist non-negative
constants γ, c satisfying

B(x) ≤ γ, for all x ∈ X0, (7)
B(x) ≥ 1, for all x ∈ Rn \Xs, (8)

E {B(f(x) + η(ω))} ≤ B(x) + c, for all x ∈ Xs. (9)

A pictorial representation of a SBF is presented in Fig-
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γ

x(k)
x(k + 1) x(k + 1) x(k)

B(x(k))

E[B(f(x(k) + η(ω))]

c = 0

x

B
(x
)

B(x(k))

E[B(f(x(k) + η(ω))]

c > 0

1

X0Xu

0

Fig. 3. The figure is borrowed from [27]. A SBF B(x) is a
non-negative function that is greater than 1 in an unsafe
region Xu, which is the complement of the safe set Xs. The
variable γ is an upper bound for B(x) over an initial region
X0. The upper bound for the expected increase in B(x) after
one step of (1) over the safe set Xs is denoted c. Proposition
5 shows that ζ(Xs, T ) ≥ 1− (γ + cT ).

ure 3. Inequality (9) requires that for all x ∈ Xs, the
expected value of the barrier function at the next step
cannot increase more than c. As shown in Proposition
5 below, we can leverage results from martingale theory
to obtain a lower bound on ζ(Xs,K).

Proposition 5 ([21, Chapter 3, Theorem 3], [40, Section
2.2]). For a safe Xs ⊂ Rn and a set of initial conditions
X0 ⊂ Xs, let the function B : Rn 7→ R≥0 be a SBF
for System (1), and let the positive integer K be a time
horizon. Then, it holds that ζ(Xs,K) ≥ 1− (γ + cK).

Thanks to Proposition 5, one can formulate the
search for a barrier certificate as the following infinite-
dimensional stochastic optimization problem

min
B∈M,c,γ

γ + cK

s.t. (7), (8), (9),
(BP)

whereM represents the set of non-negative measurable
functions in Rn. Two challenges emerge when solving
problem (BP) to solve Problem 1: (i) M is an infinite-
dimensional space, and (ii) constraint (9) involves com-
puting an expectation over an unknown probability dis-
tribution. To address the first challenge, we restrict the
search for barrier functions to the class of piece-wise
affine functions given by

M′ = {B : Rn 7→ R≥0 :

B(x, θ) = max{B1(x, θ), . . . , Bℓ(x, θ)}},
(10)

with θ ∈ Rℓ(n+1) representing the set of parameters
(ui, vi) ∈ R(n+1) that define the barrier function, i.e.,

Bi(x, θ) =

{
u⊤
i x+ vi, if x ∈ Qi,

0, otherwise,

where the polyhedral sets Qi = {x ∈ Rn : Hix ≤ hi},

for all i ∈ {1, . . . , ℓ̄}, constitute a partition of Rn. While
various classes of barrier functions have been considered
in the literature [32], [36], [40], in this work, we focus on
PWA barrier functions, as they are expressive enough
to approximate any non-linear function arbitrarily well
and, as we will show in Section 6, this choice leads to a
LP program to synthesise a SBF, thus guaranteeing effi-
ciency. For the second challenge, in the next section we
develop a new approach to create a chance-constrained
approximation of (BP) using a novel constraint tighten-
ing technique.

5 An inner chance-constrained approximation
of Problem (BP)

Solving Problem (BP) is challenging, even in the case
that the probability distribution underpinning (9) is
known. In this section, we show how to relax Prob-
lem (BP) using a reformulation in terms of a chance-
constrained optimisation problem whose feasible set
is contained in the set of feasible solutions of (BP).
Such ideas have never been used in this context. Hence,
we depart completely from the approaches taken by
[20], [32], [34], [36], [40], and [44], which either rely on
approximating Constraint (9) with the empirical distri-
bution, make strong assumptions about the noise dis-
tribution to analytically compute the expectation and
recast (9) as a convex constraint, or rely on convex over-
approximations of the expectation to (conservatively)
verify (9). Furthermore, due to the inner approximation
of (BP) in terms of a chance-constrained problem, our
approach opens the road to use the tools of scenario
optimisation discussed in Section 3.2 to obtain strong
sample complexity guarantees on the safety probability
of System (1).

To this end, fix any B ∈ M and x ∈ Rn, and let E ∈ F
be a measurable set. Then, observe that

E{B(f(x) + η(ω))} =
∫
E

B(f(x) + η(ω))P(dω)

+

∫
Ec

B(f(x) + η(ω))P(dω).
(11)

Under the assumption that B(x) ≤ M for any x ∈
Rn, which can always be enforced for SBFs, the second
term on the right-hand side of (11) can be bounded by
MP{Ec}. Our main idea then is to choose a particular
Ec that allows us to control the right-hand side of (11).
Such an intuitive reasoning is made formal in the next
lemma.

Lemma 1. For B ∈ M with ∥B∥∞ = M , let c and η
be as in (BP). Define the set

E = {ω ∈ Ω :B(f(x) + η(ω)) + ξ ≤ B(x) + c,

for all x ∈ Xs}, (12)

6



for some constant ξ ≥ 0. If there exists an ϵ ∈ (0, 1)
such that ξ ≥ M ϵ

1−ϵ and P{Ec} ≤ ϵ, then we have
E{B(f(x) + η(ω))} ≤ B(x) + c for all x ∈ Xs.

Proof. The proof of our result is based on (11). We first
remark that E is a measurable set (see Appendix A.3).
Next, fix any x ∈ Xs and define the set

Ex = {ω ∈ Ω : B(f(x) + η(ω)) + ξ ≤ B(x) + c}. (13)

Notice that, by definition, we have E ⊂ Ex. Further-
more, the set Ex is also measurable due to the assump-
tions on B, f and η, and the fact that measurability is
closed under composition. Using (11), we then obtain

E{B(f(x) + η(ω))} ≤ (B(x) + c− ξ)P{Ex}
+MP{Ec

x},
(14)

where the first term on the right-hand side of (14) follows
from the definition of Ex in (13), and the second by the
uniform boundedness condition on B. It remains to show
that

(B(x) + c− ξ)P{Ex}+MP{Ec
x} ≤ B(x) + c. (15)

To this end, it suffices to show that

−ξP{Ex}+MP{Ec
x} ≤ 0 (16)

holds, since B(x) + c is non-negative and P{Ex} ≤ 1
by definition. Substituting the two inequalities P{Ex} ≥
1 − ϵ and P{Ex} ≤ ϵ into the left-hand side of (16) we
obtain

−ξP{Ex}+MP{Ec
x} ≤ −ξ(1− ϵ) +Mϵ,

whose right-hand side is less than or equal to zero due
to the fact that ξ ≥ M ϵ

1−ϵ . This concludes the proof of
the lemma.

Lemma 1 is enabled by the chance-constraint tighten-
ing variable ξ through the condition that ξ ≥ M ϵ

1−ϵ . A
reader may question how to choose ξ and ϵ. Choosing
ϵ is a trade-off between assigning less probability mass
to the uniform upper bound, which is desirable as the
uniform upper bound represents a worst-case for barrier
value at the next step, is and the amount of data re-
quired when applying the scenario approach theory. In
our experiments (see Section 8), we employ ϵ = 0.005.
Once ϵ is chosen, the optimal choice of ξ to minimize c
is ξ = M ϵ

1−ϵ , which follows from the fact that ξ is on
the left-hand side of the inner inequality of E (and Ex)
with c on the right-hand side and M ϵ

1−ϵ is the smallest
allowed value of ξ.

An immediate consequence of Lemma 1 is the fact that

we can obtain an inner approximation of the optimisa-
tion problem (BP) in terms of a chance-constrained op-
timisation problem.

Theorem 1. Consider the dynamical system given in
System (1). Then, we have that for all ϵ ∈ (0, 1) and
positive integers K and M ≥ 1 such that ξ ≥M ϵ

1−ϵ , the
feasible set of

min
B∈M,c,γ

γ + cK

s.t. (7), (8), γ ≥ 0, c ≥ 0,

B(x) ≤M, ∀x ∈ Rn

P{ω ∈ Ω : B(f(x) + η(ω)) + ξ

≤ B(x) + c, ∀x ∈ Xs} ≥ 1− ϵ,

(CCBP)

is contained in the feasible set of (BP).

Proof. Constraints (7) and (8) are shared between Prob-
lem (BP) and (CCBP). Thus, it is sufficient to show
that the chance-constraint of Problem (CCBP) implies
that constraint (9) is satisfied. Rewriting the chance-
constraint as P{E} ≥ 1 − ϵ where E is defined as in
Lemma 1, it holds that P{Ec} ≤ ϵ. From this, the as-
sumption ξ ≥ M ϵ

1−ϵ , and the constraint that B is uni-
formly bounded by M , the conditions of Lemma 1 are
satisfied. Thus, it holds that if the chance constraint of
Problem (CCBP) is satisfied, then constraint (9) is sat-
isfied.

Unfortunately, the computational burden of solving
Problem (CCBP) is not negligible, mainly due to the
quantification over all x ∈ Xs and to the non-linear
function f . In Section 5.1, we will show how the frame-
work developed in Section 3.3 can alleviate this burden.

5.1 Over-approximating general non-linear systems
with uncertain PWA dynamics

In Section 3.3, we showed that any locally Lipschitz func-
tion can be over-approximated by uncertain PWA func-
tions, and by extension non-linear systems of the form
of System (1) can be over-approximated by uncertain
PWA systems. More formally, an uncertain PWA over-
approximation of System (1) is described as follows.

x(k + 1) ∈ F (x(k)) + η(k), (17)

where F : Rn ⇒ Rn is a set-valued mapping defined as

F (x(k)) =
{
f̂(x(k), α) : α ∈ [0, 1]

}
, (18)

with f̂ being a set-valued PWA function in the uncertain
parameter α and such that for any x ∈ Rn it holds that

7



f(x) ∈ F (x). Such a definition of a uncertain PWA over-
approximation of System (1) guarantees that between
System (1) and PWA System (17) there is a behavioural
inclusion relation, that is, for any x ∈ Rm there exists
an α ∈ [0, 1] such that f̂(x, α) = f(x).

Intuitively, we would like to synthesise a SBF for System
(17) and rely on the behavioural relation described above
to ensure that the synthesised SBF also is an SBF for
System (1). This is what we do in the following Theorem,
where we extend Theorem 1 to an uncertain PWA over-
approximation of System (1).

Theorem 2. Consider the dynamical system given
in (1) and assume access to an uncertain PWA over-
approximation (17) of the system. Then, we have that
for all ϵ ∈ (0, 1) and positive integer K, if there exist
M ≥ 1 and ξ ≥M ϵ

1−ϵ , then the feasible set of

min
B∈M,c,γ

γ + cK

s.t. (7), (8), γ ≥ 0, c ≥ 0,

B(x) ≤M, ∀x ∈ Rn

P{ω ∈ Ω : B(y + η(ω)) + ξ

≤ B(x) + c, ∀x ∈ Xs, ∀y ∈ F (x)} ≥ 1− ϵ,
(UCCBP)

is contained in the feasible set of (BP).

Proof. Constraints (7) and (8) are imposed directly in
(UCCBP). Since f(x) ∈ F (x) implies that there exists
an α ∈ [0, 1] such that f̂(x, α) = f(x), it holds that
B(f(x)+η(ω)) ≤ supy∈F (x) B(y+η(ω)). Therefore, the
chance constraint of (UCCBP) implies the chance con-
straint of (CCBP). By Theorem 1 and transitivity of the
subset relation, the feasible set of (UCCBP) is contained
in the feasible set of (BP).

6 Data-driven approximation of (UCCBP) for
the class of uncertain dynamical systems

To reformulate (UCCBP) as a robust LP problem, we
need to introduce some mathematical notation. LetQ =
{Q1, . . . , Qℓ} be a partition of the state space associated
with a barrier function, as described in Section 4. Let us
also denote four collections of indices by

I = {1, . . . , ℓ},
IX0 = {i ∈ I : Qi ∩X0 ̸= ∅},
IXs

= {i ∈ I : Qi ∩Xs ̸= ∅},
IXu = {i ∈ I : Qi ∩Xu ̸= ∅},

(19)

which represent the collection of all indices, and the ele-
ments ofQ with non-empty intersections with the initial
state, the safe set, and unsafe set, respectively. Finally,

for each pair (i, j) ∈ IXs × I, we denote the set

Qij(ω) = {x ∈ Qi : ∃y ∈ F (x), y + η(ω) ∈ Qj} , (20)

representing the subset of Qi with i belonging to IXs

and that is mapped to Qj under a given realization of
the noise. A pictorial example of Qij(ω) can be found
in Figure 4. Leveraging the results of Theorem 2 and
Proposition 3 and using the notation we have introduced
so far, we obtain the following intermediate result. The
goal of Lemma 2 below is two fold: (i) to impose piece-
wise constraints on the barrier synthesis and (ii) apply
scenario approach theory to obtain a tractable solution
in the face of an unknown noise distribution.

Lemma 2. Let D = {ω1, . . . , ωN} be a collection of N
independent samples from the noise distribution P. Fix
ϵ ∈ (0, 1), M ≥ 1, and ξ ≥ M ϵ

1−ϵ , and consider the
scenario optimisation program

min
z

γ + cK

s.t. γ ≥ 0, c ≥ 0,

Bi(x, θ) ∈ [0,M ], ∀x ∈ Qi, i ∈ I,

Bi(x, θ) ≤ γ, ∀x ∈ Qi, i ∈ IX0
,

Bi(x, θ) ≥ 1, ∀x ∈ Qi, i ∈ IXu
,

Bj(y + η(ω), θ) + ξ ≤ Bi(x, θ) + c,

∀(ω, i, j) ∈ D × IXs
× I, y ∈ F (x), x ∈ Qij(ω)

(SBP)
where d = 2+ℓ(n+1) is the number of decision variables
in Problem (UCCBP), and z = (γ, c, θ) is the collection
of optimisation variables. Then, with probability at least
1−β, where β is the right-hand side of the inequality in
Proposition (3), the optimal solution of (SBP) satisfies
the constraints of Definition 2.

Remark 1. The state-of-the-art literature on Sample
Average Approximation (SAA) for SBF design relies on
Chebyshev’s inequality [34] to bound the probability of
satisfaction, which yields a sample complexity propor-
tional to O(1/β). Instead, under the assumption that
the barrier is uniformly upper bounded, which is always
the case for our method, in Lemma 2 we can rely on
Hoeffding’s inequality, which yields a sample complexity
proportional to O(log(1/β)).

The relevance of Lemma 2 towards the general frame-
work proposed in the paper can be summarised by two
main points: (1) Lemma 2 establishes a sufficient condi-
tion to enforce the constraints of (UCCBP) by restrict-
ing the attention to each element of the partitionQ indi-
vidually; (2) it allows us to use the duality results of Sec-
tion 3.1 to obtain a computationally tractable reformu-
lation of the optimisation problem in Lemma 2 into a ro-
bust LP. To illustrate the latter point, let i ∈ I0 and con-
sider its corresponding partition Qi = {x : Hix ≤ hi}.
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Qj conv(F (Qij(ω)) + η(ω))

Qij(ω) conv(F (Q̄ij(ω)) + η(ω))
Q̄ij(ω)

Fig. 4. Given two regions Qi, Qj and a realisation of the
noise ω, the set Qij(ω) represents the subset of x ∈ Qi

such that f̂(x, α) + η(ω) ∈ Qj for some α ∈ [0, 1]. In other
words, Qij(ω) is the subset of Qi that can reach Qj given the
realisation of the noise ω. Unfortunately, Qij(ω) is not easily
computed (the example above is an exception, see Fig. 5) and
thus in Section 7.1, we will compute an over-approximation
Qij(ω).

Observe that B(x, θ) ≤ γ for all x ∈ Qi can be written
as h⊤

i λ ≤ vi and H⊤
i λ = −ui hold where λi is a non-

negative decision variable. This follows from the fact that
within the region Qi the function B(x, θ) = Bi(x, θ) is
affine and via strong duality (Prop. 2), we can rewrite
this robust constraint to two regular linear constraints.
The rewrite of the non-negativity, uniform upper bound,
and unsafe set robust constraints (see Def. 2) to regular
linear constrains follow a similar argument. Hence, for
brevity, we omit the reformulation of these.

The remaining constraintB(y+η(ω), θ)+ξ ≤ B(x, θ)+c
for all ω ∈ D, x ∈ Xs, y ∈ F (x), requires more care, yet
Lemma 2 also enables a computationally tractable re-
formulation of this. To this end, consider (i, j) ∈ IXs×I
and ω ∈ D. A challenge in reformulating the constraint
as a linear constraint is that the set Qij(ω) is not a poly-
hedron or even convex (see Fig. 5). For now, we assume
access to a polyhedral over-approximation Qij(ω) ⊂
Qij(ω) = {x : Hijωx ≤ hijω}. Then if we impose the
constraint for all x ∈ Qij(ω), then it trivially follows
that it also holds for all x ∈ Qij(ω). We will defer the
discussion of how to compute Qij(ω) to Section 7.1.

Proposition 6. Let (i, j) ∈ IXs
×I and ω ∈ D be given.

Assume that there exists two affine functions such that
Aix + bi ≤ F (x) ≤ Aix + bi for all x ∈ Qi. Then it
holds that Bj(y + η(ω), θ) + ξ ≤ Bi(x, θ) + c for all x ∈
Qij(ω), y ∈ F (x) if and only if the following constraints

hold

h⊤
ijωλijω ≤ vi − vj − u⊤

j (bi + η(ω)) + c− ξ,

H⊤
ijωλijω = A⊤

i uj − ui,

h⊤
ijωλijω ≤ vi − vj − u⊤

j (bi + η(ω)) + c− ξ,

H⊤
ijωλijω = A⊤

i uj − ui,

where λijω, λijω are a non-negative dual variables.

Collecting together all finite sets of constraints, a fi-
nite representation of the semi-infinite program (SBP)
is given as

min
z

γ + cK

s. t. γ ≥ 0, c ≥ 0,

(Non-negativity)
h⊤
i νi ≤ vi, H

⊤
i νi = −ui, for all i ∈ I,

(Uniform upper bound)
h⊤
i νi ≤M − vi, H

⊤
i νi = ui, for all i ∈ I,

(Initial set)
h⊤
i0µ

0
i ≤ γ − vi, H

⊤
i0µ

0
i = ui, for all i ∈ IX0 ,

(Unsafe set)
h⊤
i µ

u
i ≤ vi − 1, H⊤

i µu
i = −ui, for all i ∈ IXu

,

(One-step constraints)
h⊤
ijωλijω ≤ vi − vj − u⊤

j (bi + η(ω)) + c− ξ,

H⊤
ijωλijω = A⊤

i uj − ui,

h⊤
ijωλijω ≤ vi − vj − u⊤

j (bi + η(ω)) + c− ξ,

H⊤
ijωλijω = A⊤

i uj − ui, for all ω ∈ D,

for all (i, j) ∈ IXs × I,
(FSBP)

where νi, νi, µ
0
i , µ

u
i , λijω, λijω are non-negative dual

variables. (Hi0, hi0) denotes the half-space representa-
tion of Qi ∩X0.

In Corollary 1, we put together the results we introduced
and show how probabilistic safety can be computed via
the scenario approach using samples of the random vari-
able η(ω).

Corollary 1. Assume that D = {ω1, . . . , ωN} is a
collection of N independent samples from the noise
distribution P. Fix ϵ ∈ (0, 1), M ≥ 1, and ξ ≥ M ϵ

1−ϵ ,
and let β be defined as Prop. 3 where d = 2 + ℓ(n + 1)
is the number of (non-dual) decision variables in Prob-
lem (FSBP). Consider the optimal (primal) solution
z⋆(D) = (c⋆, γ⋆, θ⋆) of Problem (FSBP). Then, with
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confidence 1− β, it holds that

ζ(Xs,K) ≥ 1− (γ⋆ + c⋆K).

Thus, by solving Problem (FSBP), we can certify prob-
abilistic safety with high confidence. Note that naïvely
trying to solve (FSBP) can soon become intractable on
contemporary hardware, due to both memory require-
ments and computational time. In particular, the cardi-
nality of the Cartesian product of IXs , I, and D can al-
ready be prohibitively large for relatively small systems.
In the next section, we will discuss algorithmic strategies
that make Problem (FSBP) computationally tractable.

7 Algorithms for program construction

In this section, we discuss three aspects that allows
one to solve Problem (SBP) efficiently. Namely, in
Section 7.1, we discuss how to compute a polyhedral
over-approximation of Qij(ω). In Subsection 7.2, we
introduce an a-priori sample discarding procedure for
Problem (FSBP), which guarantees the same optimal
solution, but allowing one to consider less samples in the
optimisation problem. Finally, in Subsection 7.3, we em-
ploy spatial indexing methods to efficiently find the set
of triplets with a non-empty Qij(ω). More specifically,
we will rely on the fact that, often, for many triplets
(i, j, ω), the set Qij(ω) is empty, thus the martingale
constraint is trivially satisfied. That is, Qij(ω) is empty
if imi(Qi, ω) ∩Qj = ∅ where the image for region Qi is
defined as

im(Qi, ω) = {y + η(ω) : x ∈ Qi, y ∈ F (x)} . (21)

7.1 Over-approximation of Qij(ω)

As illustrated in Fig. 4, computing a polyhedral over-
approximation of Qij(ω) is challenging, as Qij(ω) is
(possibly) non-convex due to the uncertain 5 affine
transformation F . Furthermore, it is not sufficient to
compute the convex hull for the vertices of the uncer-
tainty variable α, that is,

conv
({

x ∈ Qi : f̂i(x, 0) + η(ω)) ∈ Qj

}
∪{

x ∈ Qi : f̂i(x, 1) + η(ω)) ∈ Qj

})
,

(22)

as shown in Fig. 4. However, we note that by defini-
tion Qij(ω) ⊆ Qi, that is, Qi is a, generally conserva-
tive, polyhedral over-approximation of Qij(ω). Hence,

5 If F is a deterministic affine transformation and Qj is a
polyhedron, then Qij(ω) is also a polyhedron and analytical
methods for computation exist.
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Qj

conv(Ai(0)
−1Qj , Ai(1)

−1Qj)

Fig. 5. A pictorial example that Qij(ω) is not necessarily
convex. In this example, we have Ai = −I, Ai = I, and
bi = bi = 0, which is a valid uncertain affine relaxation of
the trivial function f(x) = 0 in the non-negative orthant. We
consider the region Qj = [2, 3]2 and plot Ai(α)

−1Qj for 10
different values of α ∈ [0, 1]. Note that in this case Ai = I,
hence Qj = Ai(1)

−1Qj and Qj (blue) is contained in the
convex hull (pink). Qij(ω) can take on complex shapes and
no method exists for exactly computing Qij(ω). Therefore,
we compute a sound over-approximation Qij(ω) ⊂ Qij(ω).

our approach to find a polyhedral over-approximation of
Qij(ω), denoted Qij(ω), is to start from Qi and then it-
eratively removing subsets of Qi\Qij(ω). To accomplish
this, we rely on repeated bisection. To simplify the pre-
sentation, in what follows, we assume that Qi is a hyper-
rectangle. Note, however, that the procedure generalises
to compact polyhedra in half-space representation.

Fig. 6 shows an example of the bisection algorithm for
two regions Qi, Qj and a given sample ω. The bisec-
tion is repeated twice along each axis, namely once to
increase the lower bound, once to decrease the upper
bound. Note that Qij(ω), although depicted in Fig. 6, is
unknown and possibly non-convex, and further we can-
not readily check if Qij(ω) ⊂ Qij(ω). However, recall
that Qij(ω) is the subset of region Qi that under a reali-
sation of the noise ω reaches region Qj in one time step.
As a result, we can instead check if conv(Qij(ω)+ η(ω))
intersects with Qj . By applying this algorithm, we com-
pute a small over-approximation Qij(ω) of Qij(ω). In-
deed as Qij(ω) is an over-approximation, using Qij(ω)
for the constraints in Proposition 6 yields a sound, al-
though slightly conservative, solution.

7.2 Convex hull over the sample set

To reduce the number of constraints of Problem
(FSBP), observe that the constraints of the problem
are affine in η(ω). This implies that the active con-
straints, also known as support constraints, will al-
ways belong to the vertices of the convex hull over
η(D) := {η(ω1), . . . , η(ωN )}, enabling a great reduction
in the number of constraints in the program. That is,
we can impose the constraint only on the following set

10



Qi

Qij(ω)

(a)

Qij(ω)

Qij(ω)

(b)

Qij(ω)

Qij(ω)

(c)

Qij(ω)

Qij(ω)

(d)

Qij(ω)

Qij(ω)

(e)

Fig. 6. An example of the bisection algorithm to compute the over-approximation Qij(ω) of Qij(ω). The set Qij(ω) is unknown
and possibly non-polyhedral, but Qi is a sound over-approximation. By bisection from either side (first the lower then the
upper bound) along each axis we obtain a smaller over-approximation. We start by bisecting for x1 ((a) and (b)) followed by
x2 ((c) and (d)). This results in the over-approximation Qij(ω) in (e).

of samples:

D = {ω ∈ D : η(ω) ∈ vert(conv(η(D)))}. (23)

In the experiments conducted (see Section 8), we find
that generally, in practice, the cardinality of D is orders
of magnitude lower than the cardinality of D. Thus, this
can greatly improve the efficiency of our approach.

Remark 2. The method presented in this subsection
was discovered independently, but is similar to the
method presented in [37] with the exception of that
our method requires an exact convex hull rather than
an approximate convex hull. The proposed method for
sample reduction works for any scenario program that
is affine in the random variable η(ω).

7.3 Spatial indexing for intersection search

Constructing Problem (FSBP) efficiently is also a non-
trivial problem due to memory limits. In fact, a naïve
approach to construct the problem is to iterate over all
triplets (i, j, ω) in IXs × I ×D, check if Qij(ω) ̸= ∅, and
add a set of constraints if the test is positive. This ap-
proach is only tractable for smaller problems as it has
time complexity O(|Q|3). To reduce the complexity, we
can exploit methods from database theory; namely spa-
tial indexing, which is the structuring and querying of
spatially distributed data, such as maps, with improved
computational complexity [16].

To apply spatial indexing to our setting, we must first es-
tablish the data and query. It holds that Qij(ω) ̸= ∅ only
if imi(Qi, ω) ∩ Qj ̸= ∅. Hence, if we search for regions
Qj that intersect with the image imi(Qi, ω), we find all
pairs (i, j) such that Qij(ω) ̸= ∅. For spatial indexing,
we focus on R-trees as it is a well-studied and widely
available method [16]. The idea is to structure the data
in a tree structure and at each node store a Minimum
Bounding Rectangle (MBR) for the nodes below. Then,

Region

MBR

Region

MBR

Region

MBR

Region

MBR

Region

MBR

Region

MBR

MBR Children

MBR ChildrenRoot

MBR Children MBR Children

Fig. 7. An example of an R-tree applied to a partitioned
state space to allow efficient search for regions intersecting
with imi(Qi, ω). The rectangles are the Minimum Bounding
Rectangle for each node in the tree.

querying the tree for the intersection with another region
proceeds recursively down the tree, where it is only nec-
essary to search down a branch if the MBR of the branch
and the query intersect, which is an inexpensive oper-
ation by the separating hyperplane theorem [6]. Figure
7 shows an example of an R-tree for a partitioned state
space. This method improves complexity by efficiently
searching for relevant triplets (i, j, ω).

In summary, to use the framework to compute data-
driven safety certificates for non-linear systems: let the
nominal dynamics f , initial and safe set X0, Xs, a hori-
zon T , and a dataset of samples D be given. Then start
by abstracting the non-linear dynamics f to uncertain
PWA dynamics f̂ using LBP techniques. Compute the
vertices D of the convex hull of D and discard all in-
terior points. For each region Qi, find, using an R-tree,
regions that intersect with the image of the dynamics
imi(Qi, ω) and add constraints accordingly. Solve the LP
problem (FSBP), then the solution z⋆(D) = (c⋆, γ⋆, θ⋆)
is a safety certificate ζ(Xs, T ) ≥ 1 − (γ⋆ + c⋆T ) with
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confidence 1− β where β is defined as in Prop. 3.

8 Experiments

To support the theoretical results and investigate the ef-
ficacy of our approach, we implemented our framework
in Julia 6 and performed an empirical analysis on various
benchmarks. The experiments have been conducted on a
computer with an Intel i7-6700k CPU, Nvidia GTX1060
6GB GPU, and 16GB RAM, running Linux 5.10.211-
1-MANJARO. We start by describing the benchmarks
followed by the results. For a comparision with state-of-
the-art, we consider the Sample Average Approximation
(SAA) method proposed in [34], [35]. As this SBF syn-
thesis method has been developed specifically for linear
or polynomial systems, namely through SoS optimisa-
tion, in order to provide a general baseline, in the case of
non-polynomial and/or uncertain systems, we combine
it with the method proposed in [30], to find a valid SBF
in the general case.

8.1 Benchmarks

The simplest system considered is an uncertain 1D lin-
ear system x(k + 1) = x(k) + b(α) + η where b(α) =
−0.05 + 0.1α, i.e. the uncertainty is in b(α) with uncer-
tainty variable α ∈ [0, 1]. Starting in a set around the
origin X0 := {|x| ≤ 0.5}, the goal is to stay within a
larger set Xs := {|x| ≤ 2.5} for a horizon T = 10. The
distribution of the noise is a zero-mean normal distribu-
tion with standard deviation 0.01.

We also consider a 2D system from [3] representing the
longitudinal dynamics of a drone. The coordinates x1, x2

are the position and velocity, respectively, and the sys-
tem has the following dynamics

x(k + 1) =

(
1 τ

0 1− 0.1τ
m

)
x(k) + η,

where m ∈ [0.75, 1.25] and η has a zero-mean normal
distribution with diagonal covariance of [0.01 0.01]. The
variable τ represents the discretisation step, which is set
to τ = 1.0. As with the 1D linear system, we certify
safety for a horizon T = 10.

The third benchmark represents a model of a vehicle
travelling down a straight road when it experiences an
(uncertain) gust of wind. The coordinates x1, x2 repre-
sent, respectively, the longitudinal and lateral position
of the vehicle. Similar to the drone system, τ represents

6 Code is available at https://github.com/
DAI-Lab-HERALD/scenario-barrier under GNU GPLv3
license.

the discretisation step. The goal is certify the probabil-
ity of staying on the road Xs := {|x1| ≤ 2.5} for a hori-
zon T = 10, when the system evolves according to the
following dynamics

x(k + 1) =

(
1 0

0 0.95

)
x(k) +

(
50
3.6 · τ

1
2alat · τ2

)
+ η,

where τ = 1, and alat = 0 for regions where x1 ≤ 80
or x1 ≥ 120, and alat ∈ [0.0913, 0.364] for regions where
x1 ≤ 80 or x1 ≥ 120. η has a zero-mean normal distri-
bution with diagonal covariance of [0.01 0.01].

While the previous models were linear, we also consid-
ered non-linear models. In particular, we consider Neu-
ral Network Dynamical Models (NNDMs) with 1 and 2
hidden layers of 64 neurons each modelling a pendulum
taken from [30]. Finally, the last benchmark is the 3D
model Dubin’s car from [27] for a time horizon T = 10.
Dubin’s car is a unicycle model where the state is (x, y, ϕ)
with ϕ being the heading of the vehicle. We consider a
grid-based partitioning of 10 segments along each axis,
i.e. 1000 regions. The noise is only applied to the last
dimension and has a normal distribution with mean of
60 · π

180 ≈ 1.053 and standard deviation 0.1.

8.2 Results

Table 1 shows a list of results across all benchmarks.
Both the safety probability and the computation time
are reported as the mean over the 100 trials and for all
cases the number of samples is selected to ensure a con-
fidence 1 − β = 1 − 10−9. From Table 1 we observe
that, depending on the system, the method can certify
safety to > 99% with high confidence, e.g. 99.5% certi-
fied safety for the NNDM model of a pendulum with 2
layers and 64 neurons. This certification requires rela-
tively few regions of 10-30 segments per axis. Compar-
ing the NNDM pendulum model with 2 and 3 layers (1
and 2 hidden layers, respectively), the complexity of the
nominal dynamics impacts both computation time and
certifiable safety, e.g. 99.5% safety probability in 45.0s vs
97.6% safety probability in 78.5s for 480 regions, 2 and
3 layers respectively. This behavior can be explained by
LBP computing wider uncertain affine transformations
lead to more non-empty Qij(ω).

Remarkably, the linearity of the underlying system has
little impact on the certifiable safety. This is observed in
that both the 1D linear and drone systems exhibit un-
certain linear behavior, yet the 1D linear system is cer-
tifiable to 50.8% safety while the drone is certifiable to
99.5%. Furthermore, the largest system considered, Du-
bin’s car, which includes trigonometric functions, safety
is certified to 99.9%.

To compare against state-of-the-art, we report in Table 2
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Table 1
Certified safety and computation time using the method ex-
plained in Sections 5-7. Results are reported as the mean
over 100 iterations for each case study. n is the dimensional-
ity of the system and ℓ is the number of regions. ζ(Xs,K) is
the certified level of safety for β = 10−9 where 1 − β is the
level of confidence.
System n ℓ ζ(Xs,K) Time (s)

Linear 1 27 0.508 0.239

Drone 2 37 0.995 41.8

Vehicle 2

18 0.607 0.716

42 0.709 1.86

54 0.827 2.20

150 0.995 6.84

Pendulum (NNDM)
2

120 0.344 7.26

- 2 layers 240 0.756 17.6

- 64 neurons 480 0.995 45.0

Pendulum (NNDM)
2

120 0.254 14.3

- 3 layers 240 0.374 36.3

- 64 neurons 480 0.976 78.5

Dubin’s car 3 1000 0.999 383

Table 2
Comparison of our method against Sample Average Ap-
proximation (SAA) combined with the method presented in
[30], to synthesise SBFs in a data-driven fashion for non-
polynomial and uncertain systems. Results are reported as
the mean over 100 iterations for each case study. 1 − β is
the confidence in the certificate and ζ(Xs,K) is the certi-
fied level of safety. OOM means the certification procedure
crashed with an out-of-memory error.

System Method β ζ(Xs,K) Time (s)

Linear

10−2 0.514 0.219

Ours 10−3 0.513 0.226

10−4 0.512 0.234

10−2 0.506 1.91

SAA 10−3 0.506 24.9

10−4 - OOM
Pendulum 10−2 0.995 42.0

(NNDM) Ours 10−3 0.995 42.0

- 2 layers 10−4 0.995 42.3

- 64 neurons 10−2 0.903 16.5

- 480 regions SAA 10−3 0.903 47.3

10−4 - OOM

the certified safety by using our method and using SAA,
also as the mean over 100 trials. Because of the greater
sample complexity of SAA having β = 10−9 is not fea-
sible. Hence, we compare for multiple, higher values of
β to both make it tractable and find the limits of SAA.
From the table, we observe that for our method certify-
ing for orders of magnitude larger confidence (10−2 to
10−4) negligibly increases the computation time (7% for
the 1D linear system and 0.7% for the pendulum model)

and achieves similar levels of certified safety. In contrast,
for SAA, going from 10−2 to 10−3 increases the compu-
tation time between 2.8x and 13x. Furthermore, for a
confidence with β = 10−4, the amount of memory re-
quired exceeds the 16GB available. The achieved level
of certified safety is also marginally better with our pro-
posed method (0.512 vs 0.506 for the 1D linear system
and 0.995 vs 0.903 for the pendulum model).

9 Conclusion

We have presented a novel data-driven method to syn-
thesise piece-wise affine Stochastic Barrier Function
(SBF) based on a novel inner-approximation, which
relies on the scenario theory. Our approach employs
Linear Bound Propagation and stochastic approxima-
tions to guarantee that the search for a barrier reduces
to solving a Linear Programming problem, which can
be solved efficiently using the convex hull over the noise
samples and spatial indexing for faster searching. As
with any method, ours comes with limitations. In fact,
in our approach we assume that the noise is additive
and that we have i.i.d. full measurements of the state
of the system. In particular, we rely on the additivity
of the noise to achieve efficient algorithms in practice.
How to extend our approach to non-additive noise rep-
resents an important open question. Another direction
for future research to improve scalability is to consider
more complex piece-wise templates for parameterising
a SBF, e.g. piece-wise quadratic barrier candidates. Us-
ing more complex templates may require fewer pieces
and thus improve synthesis performance. For more com-
plex templates, one challenge is that strong duality, on
which we have relied heavily, does not necessarily hold.
Another direction of future work is to treat the safe con-
trol synthesis problem within the proposed framework,
where a challenge is that the optimisation problem
easily becomes bilinear.
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A Proof and auxiliary results

A.1 Proof of Proposition 2

Proof. Let the sets Z and

Z = {z : (Az + a)⊤x ≤ Bz + b, for all x ∈ P},
(A.1)

Z ′′ = {(z, λ) : h⊤λ ≤ Bz + b, H⊤λ = Az + a, λ ≥ 0},
(A.2)

be the feasible sets of (4) and (5), respectively. Our goal
is to show that Z = projz(Z ′′) = Z ′, where

Z ′ = {z : ∃λ ∈ Rp
≥0, h

⊤λ ≤ Bz + b, H⊤λ = (Az + a)}.

is the projection of the setZ ′′ onto its first d coordinates.
At the core of this result is the strong duality [6, Section
5.2.1] between the linear programs

max
x

(Az + a)⊤x

s. t. Hx ≤ h,

min
λ

λ⊤h

s. t. H⊤λ = (Az + a), λ ≥ 0,

which states that for any element x⋆ in the optimal set of
the maximisation problem there exist a λ⋆ in the optimal
set of the minimisation problem such that (Az+a)⊤x⋆ =
λ⊤
⋆ h and λ⊤

⋆ (H
⊤x⋆−h) = 0. Vice-versa, for all λ⋆ in the

optimal set of the minimisation problem there exists a
x⋆ in the optimal set of the maximisation problem such
that similar conclusions hold.

Pick any element z̄ ∈ Z. Let x̄ be such that (Az̄+a)⊤x̄ =
supx∈P a(z̄)⊤x. Hence, by strong duality, there exists a
λ̄ ≥ 0 with H⊤λ̄ = (Az̄ + a) such that λ̄⊤h = (Az̄ +
a)⊤x̄ ≤ Bz̄ + b. In other words, there is a λ̄ such that
(z̄, λ̄) ∈ Z ′′, which implies Z ⊆ Z ′.

For the other direction, consider a tuple (z̄, λ̄) ∈ Z ′′. For
this given z̄, pick

λ⋆(z̄) ∈ argmin
H⊤λ=Az̄+a, λ≥0

λ⊤h,

we notice that we have that z̄ ∈ Z ′ and

sup
x∈P

(Az̄ + a)⊤x = λ⋆(z̄)
⊤h ≤ λ̄⊤h ≤ Bz̄ + b.

The right-most inequality follows from feasibility of
(z̄, λ̄), the middle inequality by our choice of λ⋆(z̄), the
left-most equality by strong duality of linear program-
ming. Then we conclude that z̄ ∈ Z, thus concluding
the proof of the proposition.

A.2 Proof of Proposition 4

Proof. Fix a dimension j ∈ {0, . . . , n} and a convex re-
gion Pi. Then due to the mean value theorem for gener-
alised gradients [9], there exists two hyperplanes (Aix+

bi)j , (Aix+ bi)j such that it holds

(Aix+ bi)j ≤ f(x)j ≤ (Aix+ bi)j

for all x ∈ Qi. Combining all dimensions, it holds that

Aix+ bi ≤ f(x) ≤ (Aix+ bi)

for all x ∈ Qi for each region Qi. As a result, by the
definition of f̂ it holds that f(x) ∈ {f̂(x, α) : α ∈ [0, 1]}
for all x ∈ X concluding the proof.

A.3 Measurability issue of Theorem 1

We need to show that set

E = {ω ∈ Ω :B(f(x) + η(ω)) + ξ ≤ B(x) + c,

for all x ∈ Xs}, (A.3)

is Borel measurable. First of all, notice that due to the
fact that {Q1, . . . , Qℓ} is a finite partition of Xs, we have
that

E =
⋂

Qi∈Xs

{ω ∈ Ω : sup
x∈Qi

B(f(x)+η(ω))−Bi(x) ≤ c−ξ}.

(A.4)
As finite intersections of measurable sets are still mea-
surable and a measurable function maps measurable sets
into measurable sets, it is enough to show that each set

Ei = {η ∈ Rn : sup
x∈Qi

B(f(x) + η)−Bi(x) ≤ c− ξ}

is measurable. In order to do that note that when re-
stricted to Qi, Bi is a linear function, while by construc-
tion B(x) is upper semi-continuous. Furthermore, as
composition of an upper semi-continuous function with
a continuous one is still upper semi-continuous, we have
that both B(f(x) + η) and B(f(x) + η)−Bi(x) are up-
per semi-continuous functions. Consequently, by Propo-
sition 7.32 in [5] we have that gi(η) = supx∈Qi

B(f(x)+
η) − Bi(x) is upper semi-continuous. As gi(η) is upper
semi-continuous, hence Borel measurable, we have that
set Ei is Borel measurable, thus concluding the proof.

A.4 Proof for Proposition 6

Proof. Start by fixing α ∈ [0, 1], the pair (i, j) ∈ IXs ×
I, and the noise sample ω ∈ D. Then the constraint
B(f̂(x, α)+ η(ω), θ)+ ξ ≤ B(x, θ)+ c for all x ∈ Xs can
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be rewritten as

Bj(Ai(α)x+ bi(α) + η(ω), θ) + ξ ≤ Bi(x, θ) + c,

for all x ∈ Qij(ω). Using Prop. 2, we rewrite this con-
straint into a dual formulation so that we can solve it in
a lifted space. Thus, they become the following

h⊤
ijωλijω ≤ vi − vj − u⊤

j (bi(α) + η(ω)) + c− ξ,

H⊤
ijωλijω = Ai(α)

⊤
uj − ui,

where λijω is a non-negative dual variable. Since both
constraints are affine in α, they will hold for all α ∈ [0, 1]
if and only if they hold for the vertices, that is,α ∈ {0, 1}.
We conclude the proof by observing that for each noise
sample ω ∈ D, the union of Qij(ω) for all (i, j) ∈ IXs

×I
is a superset of Xs.

B Algorithm for computing over-approximation
of Qij(ω)

Our approach to computing an over-approximation of
Qij(ω) is detailed in Alg. 1, where we start with a hy-
perrectangle Qij(ω) = Qi = {x ∈ Rm : l ≤ x ≤ u},
with ≤ interpreted element-wise. The idea to reduce the
size of Qij(ω) is to increase l (Line 5-14) and decrease u
(Line 16-25) while maintaining the over-approximation
of Qij(ω). Treating the axes sequentially (Line 3), de-
noting the current axis by k, we use bisection first to
find the largest lk and then the smallest uk such that
Qij(ω)∩{x : lk ≤ xk ≤ uk} is an over-approximation of
Qij(ω). Then we can replace Qij(ω) with Qij(ω) ∩ {x :
lk ≤ xk ≤ uk} for the next axis (Line 27).

To perform the bisection for increasing lk, we compute
the midpoint clk between lk and uk (Line 7), denot-
ing them llk and ul

k respectively, and test if Qij(ω) ⊂
Qij(ω) ∩ {x : clk ≤ xk}. If true, then we may let llk = clk
(Line 10), and if not, let ul

k = clk (Line 12). This proce-
dure repeats for a fixed number of iterations and is per-
formed mutatis mutandis to decrease uk. The question
remains how to check if Qij(ω) ⊂ Qij(ω)∩{x : clk ≤ xk},
since Qij(ω) is unknown. To this end, recall that Qij(ω)
is the subset of region Qi that under a realisation of
the noise ω reaches region Qj in one time step. Thus,
if the image of the other subregion im(Qij(ω) ∩ {x :

xk ≤ clk}, ω) under the realisation of the noise ω does
not intersect Qj (Line 9), then it necessarily holds that
Qij(ω) ⊂ Qij(ω) ∩ {x : clk ≤ xk}.

Algorithm 1 Bisection-based algorithm for computing
a subset Qij(ω) of region Qi as an over-approximation
of Qij(ω).

1: function PolyPreimage(Qi, Qj , f̂ , ω, t)
2: Qij(ω)← Qi

3: for k ← 1 to m do ▷ For each axis
4:
5: llk, u

l
k ← lk, uk ▷ Increase lower bound

6: for s← 1 to t do
7: clk ←

llk+ul
k

2

8: Qij(ω)
′ ← Qij(ω) ∩ {x : xk ≤ clk}

9: if imi(Qij(ω)
′, ω) ∩Qj = ∅ then

10: llk ← clk
11: else
12: ul

k ← clk
13: end if
14: end for
15:
16: luk , u

u
k ← lk, uk ▷ Decrease upper bound

17: for s← 1 to t do
18: cuk ←

luk+uu
k

2

19: Qij(ω)
′ ← Qij(ω) ∩ {x : xk ≥ cuk}

20: if imi(Qij(ω)
′, ω) ∩Qj = ∅ then

21: uu
k ← cuk

22: else
23: luk ← cuk
24: end if
25: end for
26:
27: Qij(ω)← Qij(ω) ∩ {x : llk ≤ xk ≤ uu

k}
28: end for
29: return Qij(ω) ▷ It holds that Qij(ω) ⊂ Qij(ω)
30: end function
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