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Abstract: This paper proposes a sufficient condition for the discrete-time robust 7, filtering design
problem with low-frequency specifications using an extension of the generalized Kalman-Yakubovich-
Popov lemma. The matrices of the system are supposed to be uncertain, time-invariant and to belong
to a polytopic domain. The proposed approach takes advantage of a non-minimal filter structure,
that is, a filter with order greater than the order of the system being filtered, to provide improved
F%, bounds for low-frequency specifications. The condition can be solved by means of linear matrix
inequality relaxations with slack variables and Lyapunov matrices which are considered as homogeneous
polynomials of arbitrary degree. Numerical examples illustrate the improvements on the 7, bounds
provided by the non-minimal filter structure in combination with the more accurate polynomial
approximations (higher degrees) for the optimization variables.
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1. INTRODUCTION

The significance and utility of the Kalman-Yakubovich-Popov
(KYP) lemma in control theory and related areas are well recog-
nized. The KYP lemma encompasses other well known results
as special cases, such as positive-realness and characterization
of boundedness of rational transfer functions. The former result
is essential for linear estimation, assuring the existence of a
stabilizing positive-definite solution for a Riccati equation. This
stabilizing solution is then used to obtain the spectral factor-
ization of the transfer matrix (Kailath et al., 2000). The latter
result is the so-called Bounded Real Lemma, which is widely
used in the context of 7, control. An algebraic proof for the
KYP lemma can be found in Rantzer (1996).

The KYP was extended to deal with finite-frequency specifica-
tions by Iwasaki and Hara (2005), in a result known as the gen-
eralized KYP lemma (gK'YP). This extension relates frequency-
domain inequalities to semidefinite constraints, being useful to
ameliorate the 7%, performance of control systems that operate
in specific frequency ranges. See Graham et al. (2009) for
another equivalent extension of the gK'YP.

It is worth to point out some important and recent results
regarding the development of the gKYP theory. First, the paper
of Pipeleers and Vandenbergue (2011) has furthered into the
theory by proving realness of some matrices in the formulation.
Second, in opposition to the original article of Iwasaki and
Hara (2005) that used S-procedure, the paper of You and
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Doyle (2013) has shown the importance of Lagrange duality
to enhance the understanding of the gKYP.

Although the gKYP lemma is necessary and sufficient for
analysis purposes, devising exact conditions for the design of
filters and controllers is, to the best of the authors’ knowledge,
an open problem in the control theory. For continuous-time
systems and middle-frequency specifications, a necessary and
sufficient condition for control and estimation problems with
complex realization was proposed in ao et al. (2016).

Following similar steps, this paper addresses the problem of ro-
bust low-frequency 72 filter design for uncertain discrete-time
systems using the gKYP formulation. Sufficient parameter-
dependent linear matrix inequality (LMI) conditions are given
for the existence of asymptotically stable filters that fulfill a
low-frequency specification. The proposed approach takes ad-
vantage of a non-minimal order structure for the filter, that
is, the order of the designed filter is greater than the order of
the plant being filtered, which may provide less conservative
bounds when dealing with uncertain linear time-invariant (LTT)
systems. The non-minimal structure follows the lines of the
works of Lee and Joo (2014); Frezzatto et al. (2015, 2016,
2017) that use this filter structure in lessening the conservatism
of design conditions as the filter order enlarges. As shown
in Frezzatto et al. (2016), the performance of such filters in
terms of the %, norm criterion cannot deteriorate with the
growth of the filter order. Numerical results are presented to
show the effectiveness of the proposed approach.

The rest of the paper is organized as follows. Section 2 states
some preliminary results. A detailed description of the prob-
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lem is provided in Section 3, and the main contributions are
presented in Section 4. Section 5 provides some numerical ex-
amples illustrating the effectiveness of the proposed approach.
Finally, Section 6 concludes the paper.

The notation used throughout this paper is standard. The sym-
bol (7) indicates the transpose of matrices or vectors. The
operator He(A) = A + AT is used to shorten formulas. The set
of symmetric matrices of dimension n is denoted by S,. For
symmetric matrices, A > 0 (A < 0) means that A is positive
(negative) definite. A symmetric term in a block matrix is de-
noted by %. The identity matrix is denoted by / and the zero
matrix by 0. The set of natural numbers is denoted by N.

2. PRELIMINARIES

The well-known generalized KYP lemma (Iwasaki and Hara,
2005) is essential for the development presented in this section,
especially the version for discrete-time low-frequency range.
This result is reproduced in the next lemma.

Lemma 1. Let matrices A € R™" with no eigenvalues on the
unit circle, B € R™", C € RP*" and D € RP*", and a scalar v,
be given. The following statements are equivalent:

i) [H(O) |~ <7, V¢ =e/® and |@| < vy, where
H($)=C(¢I—-A)"'B+D.
ii) There exist matrices P,Q € S,, Q > 0, such that

33 [& raind [
SRR

Proof. The proof is presented in Iwasaki and Hara (2005).

ey

Although condition (1) is necessary and sufficient for analysis
purposes, the products involving the matrices of the system
(particularly, A and B) and variable P do not allow an im-
mediate extension to cope with synthesis of controllers and
filters. Hence, to surmount this inconvenience, a necessary and
sufficient condition with three extra multipliers is proposed in
the next lemma.

Lemma 2. Let matrices A € R™*" B R CcRP*"and D ¢
RP*" and a scalar vy be given. Then, the following condition is
equivalent to (1):

i) There exist matrices P,Q € S,,, Q > 0, and matrices F €
R™" G € R™" and H € RP*" such that

—P—He(F) 9, FB—HT 0
* Py GB+ATHT (T
X « —pPI+He(uB) DT| %0 @
* * * —1I
where

P, =Q+FA-GT,

Proof. First, by applying a Schur complement with respect to
the (4,4) block, inequality (2) can be rewritten as

F —I
2+ |G| [-I AB]+ |AT| [FT G" HT] <0, (3
H BT

Py =P —2cos(v)Q+He(GA).
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with
P 0 0
2=| x P—2cos(vy)0+C'C C'D
* * DD -1

Then, using Finsler’s Lemma (de Oliveira and Skelton, 2001),
inequality (3) holds if, and only if,

A B
ATIO} ]
211 0] =<0

T )
{B 017y

which is, indeed, inequality (1).
3. PROBLEM DEFINITION

Consider an asymptotically stable uncertain discrete LTI system
given as
x(k+1) = A(E)x(k) + By (5)w(k)

(k) = Cy(8)x(k) + Dy (5 )w(k) )

2(k) = C:(8)x(k) + Dz (& )w(k)
where x € R” is the state vector, w € R” is the noise input,
z € R? is the output to be estimated, and y € R? represents the
measured output. The matrices of the system

A(E) Bu(S)
Cy(S) Dyw(8)
C:(8) Da(8)

belong to the polytopic set given by

N
= {U(g) L UE) = ;éiUh ¢ eEN},

U(g) =

)

where
N
= {éERN . Zéizlv §i>0}7
i=1

is the unit simplex of dimension N. The goal is to design an
asymptotically stable robust filter with a non-minimal realiza-
tion whose state-space representation is
xf(k+1) = Apx(k) + Byy(k) )
zf(k) = Cyx(k) + Dyy(k)
where x; € R", ny = n+m, m € N, that minimizes a bound
to the 7%, norm in low-frequency range of the transfer matrix
associated with the dynamic of the error, e(k) = z(k) — z7(k),
that is given by

H(L,&) = CE)(CI-A(E)"'B(E)+D(E), VEcE (6)
with
A 0
AC) N ch(f()é) Ar |,
O la@-poe) ¢ -

- 5,
[B@] | B fDS &
_DZW(é) - DnyW(é)

Note that, in the aforementioned structure, if m = 0 the designed
filter is of full-order (i.e., the same order of the plant being
filtered) and if m > 0 it has non-minimal order. See (Frezzatto
et al., 2017) for details.

For design purposes, the following auxiliary system is defined
(k+1) = A(8) (k) + By (§) w(k)

y(k) = Cy(§) &(k) + Dy (&) w(k) ®)

2(k) = C:(&) (k) + D (&) w(k)
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where ¥ € R™™ m e N,

A A B

0 A() [Bw(S)
(€)

0 G\(&)|Dy
0 C.(8)|D.(&)

with Ay, A, and B being given constant matrices of suitable
dimensions, and matrices (7) are redefined as

A 0

€))

ACLE 1 mete) A |
L Te@ @ o 10
B )

| B
PO 5@~ DiDu(@)

Matrices A, A, and B are design parameters that, as discussed
in Frezzatto et al. (2017), can be randomly chosen, provided
that the pair (Aj,A;) is controllable. In this paper, it is as-
sumed that these matrices have the following simple structure
(that corresponds to the case of a memory filter as addressed
in Frezzatto et al. (2017))

0 I e O 0
0" .
A= , A= , B=0. (11
: 0 I 0
0--- 0 1

In brief, the main goal can be restated as: design a non-minimal
filter as in (5) such that a bound to the %2, norm of the transfer
function (6) with matrices given in (10) is minimized in a low-
frequency range specification.

The next section presents sufficient parameter-dependent LMI
conditions to achieve the aforementioned requirements.

4. MAIN RESULTS

The conditions in Lemma 2 already provide a suitable frame-
work for low-frequency filtering design. However, they do not
take full advantage of the system realization (10). To provide
a sufficient condition for the robust non-minimal order low-
frequency JZ, filtering design problem, the following struc-
tures are adopted for the auxiliary matrices F, G and H:

TX(8) X(©)[R B
F(§) = [vi(é) v() K} H=0, (2
R R 0
o@=| 518 56| a3

The last column block of matrix F(&) has to be made in-
dependent from the uncertain parameter & in order to enable
the synthesis of robust filters (parameter-independent) in the
upcoming design condition. The last column block of G(&) and
the matrix H are zeroed for simplicity of presentation of the
next theorem. Nevertheless, another possible choice would be
to follow the lines of Lacerda et al. (2011, 2013), which impose
some blocks of these variables to be equal (or proportional) to
AR, A € R. In this case, a line search on A may improve the
results at the price of a higher computational effort.

Theorem 1. LetE. =[I 0], E=1[0 I], A=[A Ay], and
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Mg, Cy(E)E M
[”(5)1 | e C@E My
“C ] [c@E-pGEE ¢
(g) i MBny(é)
[] | mi® |
7@ ] | 'p.&)-D;DyE)
C[PIE) PaE) C[0iE) 0:(8)
2(8) = [P;@T Pi(é)} 2= [Qzl(é)T Q§<é>] ’
GR
2(E)=[X(E) Y(&)T RE)T s(E)T 00]",
RE)=[~E 0 A)E 0 B,(E) 0],
S(E) =
—P(E)-9(E) -9 ()T . .
DE)+AE) PE)-2e05()2(E)
BT 0 —I
0 7 (&) 9(6) -1

For given scalars ¥ > 0 and v; € [—7, ], m € N, if there exist
matrices Pi(§) = Pi(§)", P3(&) = B(E)", P(&), 0i(§) =
01(8)", 03(8) = 03(&)", 02(&), X(§), Y (€), R(E), S(&), K,

MAf, MBf, Cf, and Df such that
o@(é) =0 (14)
W (S + 2 (E)RE) +R2E)T 2w <0 (15)
hold for all £ € &, where

ET 0 ETAOEIB O

071 0000
L_|00 I 0 0 O
7"=1o00 0 1 0 of (16)

00 0 0 I O

00 0 0 0 [

then there exists a filter realization Ay = Ie_lMAf, By =

Ie_lMBf, Cy, and Dy for which the connection of the non-
minimal robust filter (5) with the uncertain system (8) is such
that [ H (L, E)||. < 7, forall { = e/®, || < vp.

Proof. Assume that (14) and (15) are feasible and let
W =[-E.0AO0BQ0],

2(8) = [X:(§)" Y1(§)" Ri(§)" S1(8)" 00]".
Then, rewrite inequality (15) as in (17) (at the beginning of
the next page). The (2,2)-block in inequality (17) implies that
K+ KT = —P3(&). Due to matrix P3(§) being indefinite, it
is possible in some cases that matrix K is singular or very
close to singularity. In those cases, one can always choose
an € > 0 sufficiently small, such that K + K7 = —P5(&) +
el (by homogeneity of the LMI condition) and assuring that
conditions (14) and (15) are still feasible. Therefore, K can be
assumed as a non-singular matrix. Thus, defining

E'A+ETA)E 0  E'B+E'B,()0

K '"MgCy(E)E K 'Mar K~ 'MpyDy(E) 0

o 1 0 0 0
0 I 0 0

0 0 I 0

0 0 0 I

and multiplying (17) on the right by Y and on the left by its
transpose and noticing that E.E! =1, EET =1,and E.ET =0,
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0= S(8)+ 2 (5)2(E)+ (&) 2 (&) +
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ZEW +WTLUE) =

P (E) +He (X, (€)E. —X (€)E)
—Py(E) + Y ()E, + Y (E)E KT

01(8) ~Ri(§)E.—R(E)E+ATX(§)" +ETA(E) X (8)" + ETCY (§) My,
02(8)" =S1(E)E: — S(§)E + My,
BTX1(8)" + B (8)TX(6)" + Dy (&) My,
0
* *
—Pg ) *
02(&) +ATY (8)" ETA(&) Y(E)T+ETCI(E)My, P1(E) —2cos(ve)Q1(E) +He (Ri(E)A+R(E)A(E)E)
03(8) +Mj, Py(€)" —2cos(v)02(E)" +SN®A+S@P“@E
BTY ()T +Bu(E)TY (8)" +DJ(§)Mj, IB%TIRl(éé) By, ()"R(E)"
0 C(G)E —DyC(§)E
; ; ;
P3(E) —2cos(vy)03(€) * * a7
BTS1(8)" +B,(8)"S(E)" -7 *
—C¢(8) D,(§) = DyDy(§) 1
Z(E)—AE) Z(EA) +A(E) 2(8) + 2(8)A(E) —2cos(v) 2(8) * *
B(E)"2(8) —B(&)" Z(£)A(E) —B(§) ' 2(§)B(E) 71 x| <0 (18)
c(&) D(&) -1
after some straightforward manipulations one gets (18), that -1 0 0
is equal to (1) for uncertain systems by means of a Schur 1 0 —-10
complement. Besides, matrices A(&), B(&), C(§), and D(é) v = E'A 0 O} ’ (25)
are as in (7) after substituting the filter variables A s =K- MAf 0 0 -1

and By = K~ 'Mjg;.

The conditions of Theorem 1 may synthesize robust filters that
are not asymptotically stable. Hence, a stability condition for
the augmented system (10) must be added to the design con-
ditions of Theorem 1. The next corollary provides conditions
for the design of asymptotically stable non-minimal order low-
frequency .77, filters.

Corollary 1. LetE,=[I 0], E =
% (&) as in Theorem 1, and

[01,A=[A1 Ay], &(&) and

Mi(8) Mx(§
8= e heE)) 19
2,(&) = [e(&)T ek(&) JET KE)T], V)
%5(8)=[A(§)E 0 E 0], (1)
(&) =
M(E)+ (A (E)+ A (E)T) * }
(&) +ed (&) GE)+9(&E) — (&)
(22)
For given scalars Yy > 0, € € (—1,1), and v, € [, EL
if there exist matrices P (&) = P1(&)T, P3(&) = 35 P, 57)
01(8) = 01(E)T, 03(8) = 03(E)T, 0a(€), My (€) = My (€)
M3(8) =M3(8)", M2(£), X(§). Y (§). R(E). S £).J(E). K(£).
K, MAf, MBf, Cf, and Df such that (14), (15),
Ms(8) -0 (23)
W (AE) + Z5(E)BE) + B(8) 2,(&)") #i- - 0
(24)

hold for all £ € Ey, where

then there exists a stable filter realization Ay = K _lMAf, By =

K~'Mpy, Cy, and Dy for which the connection of the non-
minimal robust filter (5) with the uncertain system (8) is such
that [|[H({,&) || < 7, forall { =/, |@| < v,.

Proof. Assume that (14), (15), (23), and (24) are feasible and
let

W =[A O E, 0],
Zs(&) = [eJ1 (&) eKi(§)" I (&)"

Then, inequality (24) is rewritten as

FE) + Z5(E) B (&) + B (&) 25(8)"
+Zs(E) W+ W Ls(E) < 0.

K (&))"

(26)
Defining

-1 0
0 —1
L= \EravETAGE 0
K 'MpCy(E)E K™'May

and multiplying (26) on the right by Y and on the left by its
transpose leads to

M)~ AE) A (E)AE) -0
after substituting the filter variables Ay = KM, rand By =

I%‘IMBf.
-1 0
0 -1
¥=1e 0
0 el

Now, consider
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and multiply (26) on the right by ¥ and on the left by ¥7
yielding

M(E) — M (&) = 0
which assures that |g] < 1.

The rest of the proof follows from the proof of Theorem 1.

5. NUMERICAL EXAMPLES

The examples presented in this section illustrate the perfor-
mance of the proposed synthesis conditions. The routines were
implemented in MATLAB, version 8.2.0.701 64 bits, using
YALMIP (Lofberg, 2004) and Mosek (MOSEK ApS, 2015).
To derive a finite set of LMIs that guarantees the feasibility
of the proposed conditions, all parameter-dependent variables
have been assumed with polynomial dependence of an arbitrary
degree d. The LMIs were programmed with the aid of the
package ROLMIP (Robust LMI Parser) (Agulhari et al., 2012).

Example 1. Consider the LTI system borrowed from Lee (2013)

0 —0.5 —60
x(k+1) = [1 1_’_5} x(k)+ { 1 O} w(k)
y(k) = [—100 10]x(k) + [0 1]w(k)
z(k) =[1 0]x(k)
where |8] < 0.45. Note that this system can be converted into a
two-vertices polytopic representation. Table 1 shows the results
for the application of Corollary 1 for m = 0,1,2 and 3, and

d = 1. The number of scalar variables (V) and LMI rows (L)
are also presented.

27)

Table 1. Application of Corollary 1 for the sys-
tem (27) in the frequency-range |®| < /6. The
first row is the result of Lee (2013).

b4 \4 L

Lee (2013) 1.18 - -

m=0 1.17 121 73
1.10 215 93
1.00 345 119
1.00 503 145

3 33
[T
W~

This example illustrates the importance of the non-minimal
filter structure, which yields a reduction of 14% in the value
of the bound on the J#, norm. On the other hand, using the
condition of Corollary 1 with d = 6 and m = O the value
Y= 1.17 is obtained. This latter fact illustrates that the increase
in the degree d of the decision variables, by itself, cannot
guarantee that lower bounds will be obtained. For d = 1 and
m = 2, the singular value diagram of the system (27) is depicted
in Figure 1 for several values of £ € E. The frequency range
|o| < vy is shown in light blue and the bound y = 1.00 is
given by the red line. Note that the certificated value of y =
1.00 furnishes indeed an upper bound for the 7% norm of
this system in the frequency range considered, proving the
efficiency of the proposed method. As a final remark on this
example, no improvement on the bound was observed for m
grater than 2.

Example 2. Consider the uncertain discrete-time system
adapted from Wang and Yang (2008) given by
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0 0.5
o [rad/s]

Fig. 1. Singular values diagram for system (27) connected with
the filter designed by Corollary 1,d =1, m=2,v, = 1t/6,
for several values of & € E. The frequency range is given
by the region in light blue and the bound provided by the
proposed method, ¥ = 1.00, is shown by the red line.

—0.1996 0.1235+p 1
A1) = | 18704 —0.1457 } x(k) + H wik)
y(k) = [1 1]x(k) +w(k)

z(k) = [1 0] x(k)
where |p| < 0.3. A polytopic representation is obtained by

evaluating the uncertain parameter at the extreme points of the
interval.

(28)

The aim is to analyze the behavior of the above system in the
frequency range |®| < 2m/3. By applying the conditions of
Corollary 1, robust filters are designed for several values of
d and m, providing the results given in Table 2. The number
of optimization variables V and LMI rows L involved in each
problem is given as well. In this example, there is no improve-
ment over the .7, norm bounds by varying the value of m
if the degree of the parameter-dependent variables is d = 0,
i.e., constant decision variables. On the other hand, letting the
parameter-dependent variables to have an affine dependency
on the uncertainty can reduce the certified upper-bounds and
the increase of m provides small improvements over the .75,
bounds.

Table 2. %, bounds in the frequency range
|w| < 2m/3 for the system (28) for several values

of d and m.

d m b4 Vv L

0 0 203 68 44
0 1 2.03 121 56
0 2 2.03 194 72
1 0 099 122 70
1 1 094 216 90
1 2 093 346 116
2 0 095 311 124
2 1 0.93 498 160
2 2 093 725 196

Considering the case d = 1 and m = 2, a diagram depicting
the maximum singular values in the pre-specified frequency
range is presented in Figure 2. The value of the worst-case
2 norm obtained from the diagram is 0.93 (computed by
brute force), which corresponds to the certified upper-bound
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computed by Corollary 1. Contrast this with the worst-case
norm 2.03 certified for the robust filter designed with d = 0
and m = 2. This shows that the proposed approach can provide
improved performance for the system (7) and, moreover, reduce
the gap between the determined upper-bound and the worst-
case % norm.

-3 -2 -1

0
o [rad/s]

Fig. 2. Singular values diagram for system (28) connected with
the filter designed by Corollary 1,d =1, m = 2, for several
values of § € E. The frequency range is given by the region
in light blue and the bound provided by the proposed
method, ¥ = 0.93, is shown by the red line.

6. CONCLUSION

This paper proposed a new approach to the robust J%, filtering
design problem for uncertain linear discrete time-invariant sys-
tems using the gK'YP lemma with low-frequency specifications.
The approach relies on the use of non-minimal order filter
structures, which combined with polynomial approximations
for the decision variables of the parameter-dependent LMI con-
ditions, provides improved 7%, upper-bounds when compared
with other methods from the literature that use standard full-
order filter structures. Examples borrowed from the literature
illustrate the effectiveness of the proposed approach. As future
works, the authors aim to investigate the necessity part of the
results as well as to address the problem of robust %, filtering
with middle and high frequency specifications.
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