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Abstract— We present a distributionally robust framework
for dynamic programming that uses kernel methods to design
control policies satisfying both safety and optimality specifica-
tions. Specifically, we leverage kernel mean embedding to map
the transition probabilities governing state evolution into an
associated reproducing kernel Hilbert space. Our key idea lies
in combining conditional mean embedding estimated from past
data of system trajectories with the maximum mean discrepancy
distance to construct an ambiguity set, and then design a robust
control policy using techniques from distributionally robust
optimization. The main theoretical contribution of this paper is to
leverage functional analytical tools to prove that optimal policies
for this infinite-dimensional min-max problem are Markovian.
Additionally, we discuss approximation schemes based on
discretization of inputs to make the approach computationally
tractable. We validate the main theoretical findings of the
paper in a benchmark control problem involving safe control
of thermostatically controlled loads.

I. INTRODUCTION

We focus on discrete-time stochastic control problems,
where states evolve according to a stochastic transition kernel
that is unknown. We introduce a novel design approach
based on dynamic programming, leveraging data on available
trajectories of the system dynamics. To address sampling
errors resulting from finite data, we employ techniques from
“distributionally robust” optimization and control [1]–[3]. The
core of distributionally robust techniques is to compute a
feedback control policy that either minimizes an uncertain
cost function or maximizes the probability of satisfying safety
specifications [4], [5], subject to worst-case realization of
the transition kernel over a set of probability distributions or
ambiguity set. These ideas build upon the class of min-max
control problems investigated in the seminal work [6].

In most of the past work on distributionally robust optimal
and safe control, such as [2], [3], the ambiguity set is defined
in an exogenous manner independent of the current state
and action. This is a reasonable assumption when the state
evolution is uncertain in a parametric manner (e.g., the state
transition being governed by known dynamics affected by
additive disturbance). However, more generally, when the
state evolution is given by a stochastic transition kernel, it
becomes necessary to define the ambiguity associated with it
as a function of the current state and chosen action, giving
rise to decision-dependent ambiguity sets [7].
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In this paper, we leverage the framework of Hilbert space
embedding of conditional distributions [8] to define the
ambiguity set associated with the transition kernel. Condi-
tional mean embedding and its empirical estimate have been
applied in the context of dynamical systems [9], reachability
analysis [10], [11], and more recently for control synthesis
in stochastic systems [12]–[15]. Similarly, distributionally
robust optimization (DRO) subject to ambiguity sets defined
via kernel mean embedding have been studied recently [16]
where the authors established the strong duality result for this
class of problems. However, kernel DRO problems where the
ambiguity set is defined via the conditional mean embedding
has not received much attention; [17] being an exception.

In this paper, we build upon the above line of work and treat
the transition probability associated with state evolution as a
conditional distribution that depends on the chosen state and
action. Following [8], the expectation of any function of the
subsequent state can be viewed as a linear function evaluation
of the function and the conditional mean embedding in the
underlying Hilbert space. When the transition probability is
not known, rather we have access to state-input trajectories,
the empirical estimate of the conditional mean embedding has
been used to evaluate the expectation operator in [10], [11].
However, when the number of samples is not sufficiently large,
the empirical estimate may not be rich enough to approximate
the (true) conditional mean embedding sufficiently well, thus
undermining its use in safety-critical control applications.

In order to robustify this approach, we consider a dis-
tributionally robust or min-max control problem where
the transition probabilities are assumed to reside in an
ambiguity set that contains all distributions whose kernel mean
embedding are within a certain distance from the empirical
estimate of the conditional mean embedding. Following a
similar approach as [2], [3], [6], we show that there exists
a non-randomized Markovian policy which is optimal and
then discuss how to compute an optimal control input via
value iteration by leveraging duality results associated with
Kernel DRO problems [16]. We then formulate the problem
of control synthesis subject to safety specifications within
the proposed framework. Numerical results on a benchmark
problem provide valuable insights into the performance of
the proposed formulation.

II. PRELIMINARIES

A. Reproducing kernel Hilbert spaces (RKHS) and kernel
mean embeddings

Let (X ,FX) be a measurable space, where X is an
abstract set and FX represents a σ-algebra on X . A mea-
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surable function k : X × X 7→ R, is called a positive
definite kernel, if it satisfies three properties: (i) boundedness:
supx∈X |k(x, x)| <∞, (ii) symmetry: for any x, x′ ∈ X , we
have k(x, x′) = k(x′, x), and (iii) positive definiteness: for
any finite collection of points (xi)

m
i=1, where xi ∈ X for all

i = {1, . . . ,m}, the Gram matrix K ∈ Rm×m whose (i, j)-th
entry is given by k(xi, xj) is a positive definite matrix.

Two consequences are in place with the presence of a
positive definite kernel. First, every positive definite kernel is
associated with a reproducing kernel Hilbert space (RKHS)

HX :=
⋃
I⊂X
I finite

span{k(x, ·) : X 7→ R, x ∈ I}, (1)

which is the closure of all possible finite dimensional sub-
spaces induced by the kernel k. The RKHS HX is equipped
with an inner product given by ⟨k(·, x1), k(·, x2)⟩HX =
k(x1, x2). By definition, for any function f ∈ HX , there exist
a sequence of integers (mn)n∈N and a sequence of functions
fn(x) =

∑mn

i=1 β
n
i k(x

n
i , x) such that f(x) = limn→∞ fn(x),

which then implies that

⟨f, k(·, x)⟩HX = f(x),

justifying the reproducing property of the Hilbert space HX .
Second, there exists a feature map ϕ : X 7→ HX with

the property k(x1, x2) = ⟨ϕ(x1), ϕ(x2)⟩HX . The canonical
feature map is given by ϕ(x)(·) := k(x, ·), and we use
the notation ϕ(x)(x′) = k(x, x′). The inner product defined
earlier induces a norm over the RKHS defined as ||f ||HX :=√

⟨f, f⟩HX for all f ∈ HX .
We now introduce the notion of kernel mean embedding

of probability measures [8], [18]. Let P(X ) be the set of
probability measures on X . Let X be a random variable
defined on X with distribution P. The kernel mean embedding
is a mapping Ψ : P(X ) 7→ HX defined as

Ψ(P)(·) := EP[ϕ(X)(·)] =
∫
X
k(x, ·)dP(x). (2)

We have the following result from [8], [18] on the
reproducing property of the expectation operator in the RKHS.

Lemma 1 (Lemma 3.1 [8]). If EP[
√
k(X,X)] < ∞, then

Ψ(P) ∈ HX and EP[f(X)] = ⟨f,Ψ(P)⟩HX .

Lemma 1 implies that the expectation of any function of
the random variable X can be computed by means of an
inner product between the corresponding function and the
kernel mean embedding. Let {x̂(1), . . . , x̂(M)} be a collection
of M independent samples from the distribution P. Then, the
empirical estimate of the kernel mean embedding is

Ψ̂(P)(·) := 1

M

M∑
i=1

ϕ(x̂(i))(·) =
1

M

M∑
i=1

k(x̂(i), ·). (3)

In other words, Ψ̂(P) is the mean embedding of the empirical
distribution P̂M := 1

M

∑M
i=1 δx̂(i)

induced by the samples.

B. Kernel-based ambiguity sets

We leverage the kernel mean embedding to define a metric
or distance between two distributions P and Q, called the
Maximum mean discrepancy (MMD), which is defined as

MMD(P,Q) = sup
∥f∥HX ≤1

⟨f,Ψ(P)⟩HX − ⟨f,Ψ(Q)⟩HX

= ||Ψ(P)−Ψ(Q)||HX . (4)

In this work, we consider data-driven MMD ambiguity sets
induced by observed samples {x̂(1), . . . , x̂(M)} defined as

M̂ϵ
M := {P ∈ P(X ) | MMD(P, P̂M ) ≤ ϵ}, (5)

where P̂M is the empirical distribution defined earlier. Thus,
M̂ϵ

M contains all distributions whose kernel mean embedding
is within distance ϵ ≥ 0 of the kernel mean embedding of the
empirical distribution. The above ambiguity set also enjoys a
sharp uniform convergence guarantees of O

(
1√
M

)
[19].

C. RKHS embedding of conditional distributions

We now consider random variables of the form (Y,X)
taking values over the space Y × X . Let HY be the RKHS
of real valued functions defined on Y with positive definite
kernel kY : Y ×Y 7→ R and feature map ϕY : Y 7→ HY . We
now introduce the notion of conditional mean embedding.

Definition 1 (Definition 4.1 [8]). Given a stochastic kernel
T : Y 7→ P(X ), its conditional mean embedding is a mapping
ψ : Y 7→ HX such that, for all f ∈ HX ,

⟨ψ(y), f⟩HX =

∫
X
f(x)T (dx | y) = EX∼T (·|y)[f(X)], (6)

that is, the inner product of the conditional mean embedding
with a function in f ∈ HX coincides with the conditional
expectation of f under the stochastic kernel T .

In other words, ψ is a mapping from the RKHS associated
with the conditioned variable to the RKHS associated with
the observed variable. When the conditioned variable Y = y
is specified, ψ gives a specific element within the RKHS HX
which satisfies the reproducing property of the conditional
expectation operator.

In many applications, the joint or conditional distributions
involving Y and X are not known, rather we have access
to i.i.d. samples {(ŷ(i), x̂(i))}Mi=1 drawn from the joint
distribution µ ∈ P(Y × X ). Let KY ∈ RM×M be the gram
matrix associated with {ŷ(i)}Mi=1 with its (i, j)-th entry given
by [KY ]ij = kY(ŷ(i), ŷ(j)). The empirical estimate of the
conditional mean embedding is now stated below.

Theorem 1 (Theorem 4.2 [8]). An empirical estimate of the
conditional mean embedding ψ : Y → HX is given by

ψ̂M (y)(·) =
M∑
i=1

βi(y)kX (x̂(i), ·), (7)

where β(y) = (KY +MλIM )−1ky(y) ∈ RM with ky(y) =
[kY(ŷ(1), y) kY(ŷ(2), y) . . . kY(ŷ(M), y)]

⊤ ∈ RM , IM
being the identity matrix of dimension M and λ > 0 being
the regularization parameter.
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The above empirical estimate can also be obtained by
solving a regularized regression problem as shown in [20].

III. KERNEL DISTRIBUTIONALLY ROBUST OPTIMAL
CONTROL

We now connect the abstract mathematical framework
introduced earlier in the context of optimal control problems.
Consider the discrete-time stochastic system given by

xk+1 ∼ T (·|xk, ak), ak ∈ A(xk), x0 = x̄, (8)

where xk ∈ X ⊂ Rn and ak ∈ A(x) ⊂ Rp denote the state
and control input at time k ∈ N, with A(xk) being the set of
admissible control inputs at time k, and x̄ denotes the initial
state. We denote the (unknown) system dynamics by the
stochastic kernel T : X ×A(X ) → P(X ) which describes a
probability distribution over the next state.

We define a sequence of history-dependant control policies
πk : (X × A(X ))k × X → P(A(X )), which maps a
sequence of state-input pair (x0, a0, . . . , xk−1, ak−1, xk) into
a probability measure with support A(X ). The collection of
admissible control policies over a horizon of length L is

ΠL = {(π0, π1, . . . , πL−1) | πk(A(xk)|h) = 1,

∀k ∈ {0, . . . , L− 1},∀h ∈ (X ×A(X ))k ×X}.
When the control policy depends only on the current state,
i.e., πk(h) = πk(h

′) for all h, h′ ∈ (X ×A(X ))k × X that
agree on the last entry, then we call such a policy Markovian.

Our objective is to design an admissible control policy
that minimizes a performance index with respect to the
generated trajectories of the system dynamics given in (8) by
relying on available data set (x̂(i), â(i), x̂

+
(i))

m
i=1, composed

by a sequence of state-input-next-state tuple. To account for
the sampling error due to the finite dataset, we leverage
techniques from distributionally robust optimization [1], [2]
by creating a state-input-dependant ambiguity set around the
estimate of the system dynamics. Formally, we define the
space Y := X × A(X ) and X with the state space of the
dynamics in (8). Let kY : (X ×A(X ))× (X ×A(X )) → R
and kX : X × X → R be the corresponding kernels that
induce, respectively, the RKHS HY and HX .

Let T : X × A(X ) → P(X ) be the stochastic kernel
associated with the state-transition matrix, and ψ̂M be the
empirical estimate of conditional mean embedding of T
obtained from the dataset (x̂(i), â(i), x̂

+
(i))

M
i=1 following (7).

At a given (x, a), we construct the ambiguity set

M̂ϵ
M (x, a) := {P ∈ P(X ) | ∥Ψ(P)− ψ̂M (x, a)∥HX ≤ ϵ},

(9)
which is a collection of probability measures over X whose
mean embedding is ϵ close to the empirical estimate of the
conditional mean embedding of the system dynamics.

Similar to the control policy definition, we define a
collection of admissible dynamics for a given time-horizon L.
Formally, for a given sequence (x0, a0, . . . , xL−1, aL−1) of
state-input pairs, we define the set of admissible dynamics as

ΓL =
{
(µ0, µ1, . . . , µL−1) | µk ∈ M̂ϵ

M (xk, ak)

for all k ∈ {0, . . . , L− 1}
}
. (10)

We now state the distributionally robust optimal control
problem. Let L ∈ N be the time-horizon, and consider the
corresponding set of control policies ΠL and admissible
dynamics ΓL. For any π ∈ ΠL and µ ∈ ΓL, and for any initial
state x̄ ∼ µ0, where µ0 is the first entry of the admissible
dynamics µ, we denote by Pπ,µ the induced measure on the
space of sequences in X of length L. For a given stage cost
c : X ×A(X ) → R, the finite horizon expected cost

VL(π, µ) := Eπ,µ
[ L−1∑
k=0

c(xk, ak)
]
, (11)

where Eπ,µ denotes the expectation operator with respect to
Pπ,µ. Our goal is to find a policy π⋆ ∈ ΠL that solves the
distributionally robust control problem given by

inf
π∈ΠL

sup
µ∈ΓL

VL(π, µ). (12)

Problem (12) consists of an infinite-dimensional min-max
problem. We now show that there exist optimal Markovian
policies as the solution of (12). Following [6], we impose
the following regularity assumptions on our problem.1

Assumption 1. Let K ∈ B(Rn × Rp × P(Rn)) be the set
containing elements (x, a, µ) satisfying x ∈ X , a ∈ A(x)

and µ ∈ M̂ϵ
M (x, a). The following conditions hold.

1) The stage cost function c(x, a) is lower semicontinuous,
and there exists c̄ ≥ 0 and a continuous function w
defined on X satisfying w(x) ≥ 1,∀x ∈ X such that

|c(x, a)| ≤ c̄w(x), ∀a ∈ A(x), x ∈ X .

2) The transition kernels are weakly continuous, i.e., for
every bounded, continuous function u : X → R,
û(x, a, µ) :=

∫
X u(y)µ(dy) is continuous on K.

3) The function ŵ(x, a, µ) :=
∫
X w(y)µ(dy) is continuous

on K and there exists a constant β > 0 such that
ŵ(x, a, µ) ≤ βw(x) for all (x, a, µ) ∈ K.

4) The set A(x) is compact for each x ∈ X , and the set-
valued mapping x 7→ A(x) is upper semi-continuous.

5) The ambiguity set is as defined in (9).

Before stating the main result, which is inspired by the anal-
ysis in [6], we introduce the relevant terminology. Let Bw(X )
denote the Banach space of measurable functions u defined
on X with finite w-norm, i.e., ||u||w := supx∈X

u(x)
w(x) <∞.

1Due to the fact that we are dealing with infinite-dimensional spaces,
we rely on the topological notion of continuity. A function between two
topological spaces (please refer to [21] for an introduction to these concepts)
(Y, τY ) and (X , τX ), f : Y 7→ X is continuous if for all U ∈ τX we have
that f−1(U) ∈ X . The notions of weakly continuous, weakly compact, etc,
are used due to the fact that we equip the infinite-dimensional spaces P(X )
and HX with the weak∗ topology. We refer the reader to [22, Chapter 4],
for more details about these concepts.
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For each u ∈ Bw(X ), and (x, a, µ) ∈ K, we define

H(u;x, a, µ) := c(x, a) +

∫
X
u(y)µ(dy), (13)

H#(u;x, a) := sup
µ∈M̂ϵ

M (x,a)

H(u;x, a, µ), (14)

T (u)(x) := inf
a∈A(x)

H#(u;x, a)

= inf
a∈A(x)

sup
µ∈M̂ϵ

M (x,a)

[
c(x, a) +

∫
X
u(y)µ(dy)

]
. (15)

Specifically, (15) defines the distributionally robust dynamic
programming (DP) operator under MMD ambiguity set
centered at the empirical conditional mean embedding. The
value function of the distributionally robust control problem
can be defined iteratively as

vL(x) := 0,

vk(x) := (T vk+1)(x) = (T ◦ T . . . ◦ T )(vL)(x), (16)

for 0 ≤ k ≤ L− 1. We now state the following result which
shows that the problem (12) admits a non-randomized Markov
policy which is optimal.

Theorem 2. Suppose Assumption 1 holds. Then, vk
is lower semi-continuous for k ∈ {0, 1, . . . , L − 1}.
Further, there exists a function fk on X such that
vk(x) = H#(vk+1;x, fk(x)) and the Markov policy
(f0, f1, . . . , fL−1) is the optimal solution to the distribution-
ally robust control problem (12).

Proof. We follow a similar approach as the proof of [6,
Theorem 3.1] and [3, Theorem 1]. The primary challenge is
to show that the DP operator defined in (16) preserves the
lower semi-continuity of the value function. We show this
via induction. Let vk+1 be lower semicontinuous. Following
identical arguments as [6, Lemma 3.3], it can be shown that
H(vk+1;x, a, µ) is lower semicontinuous on K.

The next step is to show that H#(vk+1;x, a) is lower semi-
continuous over X ×A(X ). To this end, we need to establish
that the mapping (x, a) 7→ M̂ϵ

M (x, a) is weakly compact
and lower semicontinuous (i.e., the condition analogous to [6,
Assumption 3.1(g)] holds for the ambiguity set (9)). To show
weak compactness of M̂ϵ

M (x, a), let us first study properties
of the set

C(x,a) = {f ∈ HX : ∥f − ψ̂M (x, a)∥HX ≤ ϵ}, (17)

which is a subset of the RKHS HX . It is clear that this set is
convex, hence, by [22, Theorem 3.7], it is also weakly closed.
Since Hilbert spaces are reflexive Banach spaces, then by
Kakutani’s theorem (see [22, Theorem 3.17]) we show that
the set C(x,a) is weakly compact. Now, notice that

M̂ϵ
M (x, a) = Ψ−1(C(x,a)),

where we recall that the mapping Ψ : P(X ) 7→ HX
is continuous, thus weakly continuous. Since Ψ is also

surjective2, we have by the open mapping theorem ( [22,
Theorem 2.6]) that M̂ϵ

M (x, a) is also weakly compact.
We now show that the mapping (x, a) 7→ M̂ϵ

M (x, a) is
lower semicontinuous. We define the distance function from a
distribution µ to a closed and convex subset S of M̂ϵ

M (x, a)
as3

d(µ, S) := inf
ξ∈S

||Ψ(µ)−Ψ(ξ)||HX .

Let (x, a, µ) ∈ K, i.e., a ∈ A(x) and µ ∈ M̂ϵ
M (x, a). Thus,

||Ψ(µ)− ψ̂M (x, a)||HX ≤ ϵ.

Consider a sequence (xn, an)n≥0 with an ∈ A(xn),∀n ≥
0 and limn→∞(xn, an) = (x, a). From [23, Proposition
1.4.7], it follows that the lower semi-continuity of (x, a) 7→
M̂ϵ

M (x, a) is equivalent to

µ ∈ lim inf
n→∞

M̂ϵ
M (xn, an) ⇐⇒ lim

n→∞
d(µ,M̂ϵ

M (xn, an)) = 0.

To this end, we compute

||Ψ(µ)− ψ̂M (xn, an)||HX ≤ ||Ψ(µ)− ψ̂M (x, a)||HX

+ ||ψ̂M (x, a)− ψ̂M (xn, an)||HX

=⇒ lim
n→∞

||Ψ(µ)− ψ̂M (xn, an)||HX ≤ ϵ

+ lim
n→∞

||ψ̂M (x, a)− ψ̂M (xn, an)||HX

=⇒ lim
n→∞

||Ψ(µ)− ψ̂M (xn, an)||HX ≤ ϵ

=⇒ lim
n→∞

d(µ,M̂ϵ
M (xn, an)) = 0,

from the definition of the ambiguity set. In the second last step,
the second term goes to 0 as limn→∞(xn, an) = (x, a) due
to the continuity of the kernel function and the definition of
ψ̂M (x, a) in (7). As a result, µ ∈ lim infn→∞ M̂ϵ

M (xn, an)

and thus, M̂ϵ
M (x, a) ⊆ lim infn→∞ M̂ϵ

M (xn, an).
With the above properties of the mapping (x, a) 7→

M̂ϵ
M (x, a) in hand, it can be shown following identical

arguments as the proof of [6, Theorem 3.1] that both
H#(vk+1;x, a) and T (vk+1) are lower semicontinuous and
there exists a function fk : X → A(x) such that ak = fk(xk)
is the minimizer of (15) for u = vk+1.

Remark 1. Note that the ambiguity sets considered in related
works on distributionally robust control [2], [3] do not depend
on the current state and action. As a result, properties such as
compactness and lower semi-continuity are easily shown. In
contrast, the ambiguity set considered here is more general
and directly captures the dependence of the transition kernel
on the current state-action pair.

By showing that there exists deterministic and Markovian
policies that optimize (12), Theorem 2 allows us to reduce
the search of general history-dependant policies to functions

2For any function f ∈ HX there exists a sequence fn(x) =∑mn
i=1 βi(n)k(x

n
i , x) such that limn→∞ fn(x) = f(x). Let Pn =∑mn

i=1 βi(n)δxn
i

and notice that Ψ(P) = Ψ(limn→∞ Pn) = f , thus
showing that Ψ is a surjective mapping.

3This distance is only well-defined due to the weak compactness result
shown above, as it would allow us to take convergent subsequences for any
sequence achieving the infimum in this definition.
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of the form π : X → A(X ). However, the result of Theorem
2 does not directly lead to a computationally tractable
formulation towards solving problem (12).

To this end, we exploit the rectangular structure of the
admissible dynamics in (10), and observe that the inner
supremum in (12) is computed separately for each time instant.
Thus, for any f ′ ∈ HX , we have

sup
µk∈M̂ϵ

M (xk,ak)

EX∼µk
[f ′(X)] = sup

Ψ(µk)∈C(xk,ak)

⟨f ′,Ψ(µk)⟩HX , (18)

where the last equality is a consequence of the reproducing
property, and C(xk,ak) is as defined in (17). Following [16],
the support of C(xk,ak) can then be computed as

σC(xk,ak)
(f ′) = sup

f∈C(xk,ak)

⟨f ′, f⟩HX

= sup
f∈C(xk,ak)

⟨f ′, f − ψ̂(xk, ak)⟩HX + ⟨f ′, ψ̂(xk, ak)⟩HX

= ϵ||f ′||HX +

M∑
i=1

βi(xk, ak)f
′(x̂+(i)), (19)

where βi(xk, ak) denote the coefficients of the empirical
estimate of the conditional mean embedding as given in
(7) evaluated at the state-action pair at the time instant
k ∈ {1, . . . , L}, and where x̂+(i) represents the collected
sample4 along the observed trajectories of the dynamics. To
compute the norm ∥f ′∥HX , we solve, similar to Theorem 1,
a regression problem given by

min
αi,i=1,...,m

∥∥∥∥∥
m∑
i=1

αik(x̂
′
(i), ·)− f ′

∥∥∥∥∥
HX

+ λ∥α∥22, (20)

where {x̂′(1), . . . , x̂
′
(m)} are arbitrary points in the domain of

the function f ′. The solution of this regression problem is
given by ∥f ′∥HX =

√
α⊤K ′

Xα, where

α = (K ′
X + λ′I)−1

[
f ′(x̂′(1)) . . . f ′(x̂′(m))

]⊤
,

and K ′
X is the Rm×m Gram matrix whose (i, j)-entry is given

by kX (x̂′(i), x̂
′
(j)). Notice that the value of the regularizer λ′

or the collection of points used to estimate ∥f ′∥HX may not
necessarily coincide with those points used to estimate the
conditional mean embedding in Theorem 1.

We now discuss how to solve for optimal control inputs
using a value iteration approach. At given state x ∈ X , we
discretize the input space A(x) as {a(1), . . . , a(R)}. To define
the value function, we slightly modify the set of admissible
dynamics ΓL in (10) by fixing the initial distribution to a
given point x ∈ X . Then, for a given function f : X → R,
we recursively define the collection of functions vℓ : X → R,
for ℓ ∈ {1, . . . , L}, with vL = f , and

vℓ(x) = min
a(j):j=1,...,R

[
c(x, a(j))

+ sup
µ∈M̂ϵ

m(x,a(j))

∫
X
vℓ+1(ξ)µ(dξ)

]
. (21)

4That is, for each i ∈ {1, . . . ,m}, x̂+
(i)

is sample from T (· | x̂(i), â(i)).

For a given (x, a(j)), the inner supremum problem is an
instance of (18) and can be evaluated by setting f ′ = vℓ+1

in (19). We then find the index j that minimizes the R.H.S.,
and set the value function at x to be the minimum value.

1) Distributionally Robust Safe Control: While the dis-
cussion thus far has focused on the general problem of
optimal control, this approach can also be leveraged for
synthesizing control inputs meeting safety specifications.
Using the notation of previous sections, let L ∈ N be the
time-horizon and S ⊂ Rn be a measurable safe set. For
an admissible control policy π ∈ ΠL, admissible dynamics
µ ∈ ΓL, and initial state x, the probability of the state
trajectory being safe is given by

VS(x;π, µ) = Pπ,µ
x0

{xk ∈ S, for all k ∈ {1, . . . , L}}, (22)

where (x1, x2, . . . , xL) denote the solution of (8) under the
dynamics µ and policy π. Our goal is to solve the problem

V ⋆
S (x) = sup

π∈ΠL

inf
µ∈ΓL

VS(x;π, µ), (23)

using the mathematical framework proposed in this paper.
In fact, one can show that under standard assumptions, an
analogous result of Theorem 2 holds for (23), namely, there
exists an optimal Markovian and deterministic policy. Hence,
using similar approximations as in the previous section,
function V ⋆

S in (23) can be approximated recursively as

vL(x) := 1S(x),

vℓ(x) := max
a(j):j=1,...,R

inf
µ∈M̂ϵ

m(x,a(j))
1S(x)

∫
X
vℓ+1(ξ)µ(dξ),

(24)

for ℓ ∈ {0, . . . , L− 1}, where 1S is the indicator function of
the set S. In the numerical example reported in the following
section, we compute the safe control inputs by solving the
inner problem in an identical manner as (19) and (20).

IV. NUMERICAL EXAMPLES

Inspired by past works [3], [4], we apply our methods to
study safety probability of a thermostatically controlled load,
whose dynamics is given by

xk+1 = αxk + (1− α)(θ − ηRPuk) + ωk, (25)

where the state xk ∈ R is the temperature, uk ∈ {0, 1}
is a binary control input, representing whether the load is
on or off, and ωk is a stochastic disturbance taking values
in the uncertainty space (Ω,F ,P). The parameters of (25)
are given by α = exp(h/CR), where R = 2◦C/kW, C =
2kWh/◦C, θ = 32◦C, h = 5/60 hour, P = 14kW, and
η = 0.7. Our goal is keep the temperature within the range
S = [19◦C, 22◦C] for 90 minutes.

Our goal is to compute a control policy based on
available sampled trajectories for the model (25). Let
(x̂(i), û(i), x̂

+
(i))

M
i=1 be a collection of observed transitions

from the model, where the pair (x̂(i), û(i)) is one of the
random chosen points in the set [19, 22] × {0, 1} and x̂+(i)
represents the observed future state. We solve the dynamic
programming recursion given in (24) by partitioning the state
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Fig. 1: Solution of the dynamic programming recursion given in (24) for
the kernel ambiguity sets with different values of the radius (blue lines).
The solid red line is the value function using the methods proposed in [3].

space uniformly from 18◦C to 23◦C with 35 points, and
using 7000 data points to estimate the conditional kernel
mean embedding map (see Theorem 1) and to compute the
norm of the value function as (20). We choose λ = 200 as
the regularisation parameter, and use the kernel functions

kX (x, x′) = e100|x−x′|2 ,

kY((x, u), (x
′, u′)) = e−100|x−x′|2 + k1(u, u

′), (26)

where k1(u, u
′) = 1 + uu′ + uu′ min(u, u′) −

u+u′

2 min(u, u′)2 + 1
3 min(u, u′)3 for the numerical

examples. The choice of the kernel k1 has shown better
results for this problem compared to the Gaussian kernel.

Figure 1 shows the obtained value function for different
values of the radius ϵ, where we notice a decrease in the
returned value function with the increase in the size of the
ambiguity set. The y-axis represents the safety probability and
the x-axis is the temperature; notice that the value function
is zero outside the safe set [19◦C, 22◦C]. We also compare
the returned value function with the one obtained using the
method proposed in [3] (see [3] for the definition of the
parameters c and b shown in the legend).

V. CONCLUSION

We analyzed the problem of distributionally robust (safe)
control of stochastic systems where the ambiguity set is de-
fined as the set of distributions whose kernel mean embedding
is within a certain distance from the empirical estimate of
the conditional kernel mean embedding derived from data.
We showed that there exists a non-randomized Markovian
policy that is optimal and discussed how to compute the value
iteration by leveraging strong duality associated with kernel
DRO problems. Numerical results illustrate the performance
of the proposed formulations and the impact of the radius
of the ambiguity set. There are several possible directions
for future research, including deriving efficient algorithms to
compute the value iteration without resorting to discretization,
representing multistage state evolution using composition
of conditional mean embedding operators, and a thorough
empirical investigation on the impact of dataset size on the
performance and computational complexity of the problem.
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