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Abstract— We consider a multi-agent setting with agents
exchanging information over a network to solve a convex
constrained optimisation problem in a distributed manner. We
analyse a new algorithm based on local subgradient exchange
under undirected time-varying communication. First, we prove
asymptotic convergence of the iterates to a minimum of the
given optimisation problem for time-varying step-sizes of the
form c(k) = η

k+1
, for some η > 0. We then restrict attention

to step-size choices c(k) = η√
k+1

, η > 0, and establish a

convergence rate of O
(

ln(k)√
k

)

in objective value. Our algorithm

extends currently available distributed subgradient/proximal
methods by: (i) accounting for different constraint sets at
each node, and (ii) enhancing the convergence speed thanks
to a subgradient averaging step performed by the agents. A
numerical example demonstrates the efficacy of the proposed
algorithm.

I. INTRODUCTION

We focus on distributed algorithms to solve convex opti-
misation problems. They are motivated by applications, such
as sensor networks, robust estimation and source localisa-
tion [1], that require distribution of computational power and
possibly data to alleviate the burden caused by data size. The
main challenge is to devise fast and efficient algorithms that
converge to an optimal solution of the centralised problem
without requiring global information.

In the past decade, motivated by [2], [3], distributed
optimisation has drawn the attention of the community
because of its relevance to important real-world problems.
Indeed, [2], [3] proposed a distributed projected subgradi-
ent algorithm that converges under time-varying network
for problems with a common constraint set known by all
agents. More recently, [4] extended these results to the time-
varying directed case by relying on a push-sum consensus

protocol [5]. They showed convergence rates of O
(

ln(k)√
k

)

for the function value at the running average of the local
iterates. Another contribution in this direction was made
by [6], which proposed a proximal algorithm in which the
local iterates maintained by the agents converge to a point in
the optimal set under time-varying network and for problems
with different constraint sets.
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A new research direction involves the use of gradient
tracking, mainly because sharp convergence results can be
obtained for directed and undirected communication net-
works [7], [8], [9]. To achieve this improved performance,
each agent maintains an additional local variable that tracks
asymptotically the (sub-)gradient of the global function.
Agents then use this additional information, which provides
a more accurate direction towards minimising the overall
objective function, to update their estimate of the solution.

The contribution of this paper is twofold: 1) unlike the
aforementioned literature, we propose a new algorithm based
on subgradient averaging that can simultaneously cope with
non-differentiable local objective functions, and different
constraint sets, while accounting for a time-varying com-
munication network. By showing convergence in iterates for
a step-size of the form c(k) = η

k+1 , η > 0, we set a new
framework accounting for the presence of different constraint
sets and subgradient exchanges. As a consequence of this
result, we expect faster practical convergence when com-
pared to standard projected subgradient algorithms because
we use an additional information that better approximate the
subgradient of the global function; 2) We build upon the

results of [6] and establish a convergence rate of O
(

ln(k)√
k

)

,

when the step-size is c(k) = η√
k+1

, η > 0. Even though

similar bounds have appeared in the literature, the present
analysis offers the first convergence rate for the particular
subgradient averaging scheme with the same rate as for
standard distributed subgradient methods. We highlight that
in our results we allow for different constraint sets, thus
extending the scope of existing algorithms in the literature.
Note that lifting constraints in the objective via characteristic
functions, although possible, is not amenable to algorithms
like [3], [10], [11], as this would render the subgradient of
the resulting objective unbounded.

The paper is organised as follows. In Section II we present
the problem statement, the main assumptions, as well as a
description of the proposed algorithm. Section III contains
the main results of this paper related to convergence in
iterates and a convergence rate analysis as far as the optimal
value is concerned. Section IV provides a numerical example
to demonstrate the main algorithmic features of our scheme.
Finally, some concluding remarks are provided in Section V.
All omitted and simplified proofs can be found in [12].

II. PROBLEM STATEMENT

A. Problem set-up and Assumptions

Consider the following optimisation problem

minimise
x

f(x) =
m∑

i=1

fi(x)

subject to x ∈ ∩m
i=1Xi

(1)
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where x ∈ R
n is the global decision vector, and fi : R

n → R

and Xi ⊂ R
n, for all i = 1, . . . ,m, constitute the local

objective function and constraint set for agent i, respectively.
We suppose that each agent i possesses as private information
the triple (xi, fi, Xi), where the first component xi is a local
copy of the global variable x.

The goal is for all agents to agree on the local variables,
that is, xi = x⋆, for all i = 1, . . . ,m, where x⋆ belongs to the
optimal set of (1), i.e., the subset of R

n with the property
that f(x⋆) ≤ f(x) for all x ∈ ∩m

i=1Xi. In this paper, we
suppose the following assumptions on fi and Xi.

Assumption 1: (Convexity, compactness and non-
emptiness of the interior)

i) For all i = 1, . . . ,m, the function fi is proper and
convex (see [13, Chapter 1] for a definition).

ii) The set Xi ⊂ R
n is compact and convex for all

i = 1, . . . ,m, and ∩m
i=1Xi has a non-empty interior.

We also assume that Xi ⊂ ∩m
i=1int(domfi) for each

i = 1, . . . ,m, where int(A) indicates the interior of the
set A.

iii) The distance between the set ∪m
i=1Xi and the comple-

ment of the interior of the domain of f (which is closed
and convex) is strictly greater than zero.

As a consequence1 of Assumption 1, we have that
∪x∈conv(∪Xi)∂f(x) is a bounded set, that is, ‖g‖ ≤ L, where
g ∈ ∂f(x) for any x ∈ ∪m

i=1Xi. This result is formally stated
in the next Lemma.

Lemma 1: Under Assumption 1, we have that

i) The set conv(∪m
i=1Xi) is compact, where conv(A) is

the convex hull of the set A;
ii) The set ∪x∈conv(∪Xi)∂f(x) is non-empty and bounded;
iii) The function f is Lipschitz continuous over ∩m

i=1Xi,
i.e., there exists a positive scalar L such that

|f(x) − f(y)| ≤ L‖x− y‖, ∀ x, y ∈ ∩m
i=1 Xi.

Proof: The proof is omitted for brevity (see [14,
Theorem 24.7], or [12] for an alternative argument.)

B. Proposed algorithm

The pseudocode of the proposed scheme is shown in
Algorithm 1. We initialise each agent’s local variable with
an arbitrary xi(0) ∈ Xi, i = 1, . . . ,m; such points are not
required to belong to ∩m

i=1Xi.
At iteration k, agent i receives xj from the neighbouring

agents, and averages them through A(k), which captures the
communication network, to obtain zi(k). Here we represent
the element of the j-th row and i-th column of matrix A(k)
by [A(k)]ij . Agent i then calculates a subgradient, gi, of

its own objective function evaluated at zi(k) and sends this
information back to its neighbours. In the sequel, agent i
averages the received gj(zj(k)) in order to compose a proxy
for a subgradient of f(x) (Step 3), called z̃i(k). Finally, at
Step 4, agents use variables z̃i(k) and zi(k) to update their
local estimates by projecting zi(k)−c(k)z̃i(k) onto the local
set. Indeed, note that Step 4 can be rewritten as

xi(k + 1) = PXi
[zi(k)− c(k)z̃i(k)]

where PXi
denotes the projection operator onto the set Xi.

1A thorough discussion of Assumption 1 is given in the extended version
of this paper [12]. Note that the bound on ‖g‖ coincides with the Lipschitz
constant in Lemma 1, item iii).

Algorithm 1 Proposed Scheme

Require: : xi(0), i = 1, . . . ,m
1: while Until convergence do

2: zi(k) =
∑m

j=1[A(k)]ijxj(k), ∀ i = 1, . . . ,m

3: z̃i(k) =
∑m

j=1[A(k)]ijgj(zj(k)), ∀ i = 1, . . . ,m

4: xi(k + 1) = argminξ∈Xi
z̃i(k)

T ξ + 1
2c(k)
‖zi(k) −

ξ‖22, ∀ i = 1, . . . ,m

5: k ← k + 1
6: end while

We now characterise A(k) that encodes the network in
Algorithm 1. To this end, let G(k) = (N , E(k)) be a
undirected graph, where N = {1, . . . ,m} is the number
of agents and E(k) ⊂ N × N is the set of edges at
iteration k, that is, if node (j, i) ∈ E(k) then node j sends
information to node i at iteration k. We associate the time-
varying matrix A(k) to the edge set E(k), with [A(k)]ij 6= 0
if (j, i) ∈ E(k) at time k. As the graph is undirected, matrix
A(k) can be chosen to be symmetric. We also define the
graph G∞ = (N , E∞), in which (j, i) ∈ E∞ if agent j
communicates with agent i infinitely many times. Then, we
impose the following assumption.

Assumption 2: (Network Properties)

i) The graph (N , E∞) is strongly connected. Moreover,
there exits a uniform upper bound on the communica-
tion time for all (j, i) ∈ E∞.

ii) There exists an η ∈ (0, 1) such that [A(k)]ii ≥ η and
that if [A(k)]ij > 0 then we have [A(k)]ij ≥ η, for all
k ∈ N and for all i, j = 1, . . . ,m.

iii) Matrix A(k) is doubly stochastic.

These are standard hypotheses in the distributed optimisa-
tion literature (see [2], [3], [10], [6] for more details).

The presented analysis is divided into two parts. First, we
prove asymptotic convergence of the local variables, xi, to
some optimal solution of the centralised problem counterpart
under square-summable but not summable step-sizes, e.g.,
c(k) = η

k+1 , η > 0. We then show convergence rates of

O
(

ln(k)√
k

)

in terms of the function value for the time-varying

step-sizes of the form c(k) = η√
k+1

, η > 0.

III. ALGORITHM ANALYSIS

A. Convergence in iterates

In this subsection, we impose the following assumption
on the step-size.

Assumption 3: (Non-increasing, square-summable step-
size) Let (c(k))k∈N be the sequence of step-sizes adopted
in Step 4 of Algorithm 1. We impose that

i) c(k) ≥ 0, and c(k) ≥ c(r), for all k, r ∈ N with r ≥ k,
ii)

∑∞
k=1 c(k) = ∞ and

∑∞
k=1 c(k)

2 < ∞.

A sequence that satisfies Assumption 3 is c(k) = η
k+1 , for

some η > 0. Assumption 3 is necessary to prove one of the
main results of this paper, namely, the asymptotic conver-
gence for the sequences (xi(k))k∈N, for all i = 1, . . . ,m, to
a point in the optimal set of (1).
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Theorem 1: Let (xi(k))k∈N be the sequences generated
by Algorithm 1, for all i = 1, . . . ,m. Under Assumptions 1-
3, we have that for some minimiser x⋆ in the optimal set
of (1),

lim
k→∞

‖xi(k)− x⋆‖ = 0, ∀ i = 1, . . . ,m.

Proof: See Appendix for the main steps of the proof
and [12] for a complete proof.

Theorem 1 extends the result in [6] by allowing an agent
to communicate subgradient information to neighbouring
agents, a feature that can speed up practical convergence.

B. Convergence in value and convergence rate

We impose now the following assumption on the step-size.
Assumption 4: The sequence (c(k))k∈N used in Step 4 of

Algorithm (1) is c(k) = η√
k+1

, for some η > 0.

Our convergence rate results build on the running average
of the iterates generated by Algorithm 1, that is, the sequence

x̂i(k + 1) =
c(k + 1)xi(k + 1) + S(k)x̂i(k)

S(k + 1)
, (2)

where S(k) =
∑k

r=1 c(r), and (xi(k))k∈N for all i =
1, . . . ,m are the sequences generated by Algorithm 1, with
the initial conditions x̂i(0) = xi(0) and S(0) = 1. By
rewriting expression (2) as

x̂i(k) =
1

S(k)

k∑

r=1

c(r)xi(r),

we observe that the running average can interpreted as a
convex combination of previous iterates. The next theorem
establishes a convergence rate for the function value along
the running average defined in (2).

Theorem 2: Consider the running average defined in (2).
Under Assumptions 1, 2, and 4 the following inequality holds
for all k ∈ N \ {0}

m∑

i=1

fi(x̂i(k))− f(x⋆) ≤ B1
1√
k
+B2

ln(k)√
k

. (3)

where B1, B2 > 0 and defined in the Appendix.
Proof: See Appendix for a sketch of the proof. A self-

contained argument of this result is presented in [12].
Theorem 2 asserts convergence of the function value along

the running average x̂i(k), i.e., all limit point of (x̂i(k))k∈N

are optimal. We point out that the result of Theorem 2 further
extends the work presented in [6] not only by allowing
agents to communicate their (sub-)gradients, but by also
unveiling how to adapt the proof line in that paper to come
up with convergence results that recover traditional rates for
distributed subgradient methods.

IV. NUMERICAL EXAMPLES

We now demonstrate the results through a numerical
example. We consider problem (1) in which the functions
fi(x) are given by

fi(x) = max

{

|x(1)|, max
2≤ℓ≤n

|x(ℓ) − (i+ 1)x(ℓ−1)|
}

,

where x(ℓ), ℓ = 1, . . . , n, represents the ℓ-th component
of the vector2 x. This example was analysed in [15], and
was originally adapted from [16] to the distributed case. We
consider the case where n = 20 and m = 12. Note that
the optimal solution and optimal value for this problem are
x⋆ = 0 and f(x⋆) = 0, respectively.

We consider a time-invariant undirected network (notice
that the relevant matrices do not depend on the iteration
index k) whose topology is given by a line graph. Given
the topology, we generate a doubly stochastic A such that,

[A]ij =
1

1 +max{Ni,Nj}
, i 6= j,

where Ni and Nj are the number of neighbours of agent i
and j, respectively. The diagonal elements of A are defined
as [A]ii = 1−∑

j 6=i[A]
i
j . Note that matrix A is symmetric and

doubly stochastic, as the network undirected. Time-varying
networks could be accommodated by the proposed algorithm.

Agents’ constraint sets are different, and for each one we
assumed that the constraint set is encoded by componentwise
upper and lower limits on x. These limits were randomly
generated from a uniform distribution. In our first numerical
investigation, we set the step-sizes to be c(k) = 1

k+1 ,
aligned with Assumption 3. To investigate the statement of
Theorem 1, we monitor the evolution

Resx(k) =

12∑

i=1

‖xi(k)− x⋆‖

for k = 1, . . . , 10, 000 iterations. This result is shown in
Figure 1, where the solid blue line corresponds to the iterates
generated by Algorithm 1, initialised at the optimal solution
x⋆ = 0. Observe that the iterates do not stay at the optimal
solution as the function is not differentiable at the origin,
implying that there exists a nonzero subgradient such that the
iterate sequence escapes from the optimal solution. However,
we also observe that after some initial perturbation, the
iterates are steered back towards the optimal solution, thus
supporting the results presented in Theorem 1.

10
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10
0
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Fig. 1. Evolution of Resx(k) for Algorithm 1 (solid, blue line). Both axes
are in logarithmic scale.

In the second part of our numerical investigation, we
choose the time-varying step-size according to Assumption 4,

2Variable x(ℓ) should not be related to xi which corresponds to a local
copy of x maintained by agent i, rather than to a particular component.
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i.e., c(k) = 100√
k+1

. To investigate the statement of Theorem 2,

we monitor the evolution of

Resf (k) =

12∑

i=1

fi(x̂i(k))− f(x⋆),

where x̂i(k) is defined in (2), for k = 1, . . . , 100, 000

iterations. We initialized Algorithm 1 with x
(ℓ)
i (0) = 0.1

for ℓ = 1, . . . , 19, and x
(20)
i (0) = 1, for all i = 1, . . . , 12.

The results are illustrated in Figure 2. The theoretical bound

O
(

ln(k)√
k

)

is depicted as the dashed-dot black line. The solid

blue curve is the sequence
∑m

i=1 fi(x̂i(k)) for the iterates
generated by Algorithm 1. Observe that the results comply
with the theoretical bound of Theorem 2.
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Fig. 2. Evolution of Resf (k) for Algorithm 1 (solid, blue line). The solid
black line represents an estimate of the theoretical bound (up to a constant
factor) predicted by means of Theorem 2. Both axes are in logarithmic scale.

V. CONCLUSION

We proposed a new algorithm based on subgradient av-
eraging and proved two results for this scheme: (1) we
have shown asymptotic convergence to the optimal set of
the centralised problem for a time-varying step-size of the
form c(k) = η

k+1 , η > 0; (2) for time-varying step-

sizes of the form c(k) = η√
k+1

, η > 0, we established a

convergence rate of O
(

ln(k)√
k

)

as far as the function value

of the running average of the local iterates is concerned.
With these results, we recovered standard convergence rates
of distributed subgradient methods; however, we extended
them to the more general case in which agents are allowed
to have their own constraint set. A numerical example has
been presented to demonstrate the obtained results.

APPENDIX

A. Auxiliary results and proofs of Section III-A

Let

v(k) =
1

m

m∑

i=1

xi(k), (4)

be the average of the estimates at time k. Since v(k) might
not necessarily belong to the feasible set ∩m

i=1Xi, we define

v̄(k) =
ρ

ǫ(k) + ρ
v(k) +

ǫ(k)

ǫ(k) + ρ
x̄, (5)

where x̄ is a point in the interior of the feasible set
(which is non-empty by Assumption 1), and ǫ(k) =

∑m

i=1 dist(v(k), Xi). As shown in [3], the point v̄(k) is in
∩m
i=1Xi for all k ∈ N. Define ei(k+1) = xi(k+1)− zi(k),

and note that Step 2 of Algorithm 1 can be written as

xi(k + 1) =
m∑

j=1

[A(k)]ijxj(k) + ei(k + 1), (6)

which can be interpreted as perturbed consensus protocol.
Lemma 2: The following relations hold.

i) Let (xi(k))k∈N for all i = 1, . . . ,m be the se-
quences generated by Algorithm 1, and (v(k))k∈N and
(v̄(k))k∈N be defined as in (4) and (5), respectively.
Then, under Assumption 1,

m∑

i=1

‖xi(k + 1)− v̄(k)‖ ≤ µ

m∑

i=1

‖xi(k)− v(k)‖,

where µ = 2
ρ
mD+ 1, and D is the diameter of the set

∪m
i=1Xi (which is well-defined by Lemma 1, item i)).

ii) Let (xi(k))k∈N for all i = 1, . . . ,m and (v(k))k∈N be
as in item i), and consider the definition of the error
ei(k). Then, under Assumption 2, we have that

‖xi(k + 1)− v(k + 1)‖ ≤ λq
k

m
∑

j=1

‖xj(0)‖+ ‖ei(k + 1)‖

+

k−1
∑

r=0

λq
k−r−1

m
∑

j=1

‖ej(r + 1)‖+ 1

m

m
∑

j=1

‖ej(k + 1)‖,

where λ = 2(1+ η−(m−1)T )/(1− η(m−1)T ) ∈ R+ and

q = (1− η(m−1)T )
1

(m−1)T ∈ (0, 1), holds for all k ∈ N

and for all i = 1, . . . ,m, with T being the uniform
bound of Assumption 2, item i).

iii) Let (c(k))k∈N be a non-increasing and non-negative
sequence, and L̄ be a positive scalar. If Assumption 2
holds, then for all k ∈ N we have that

2L̄

N∑

k=0

c(k)

m∑

i=1

‖xi(k + 1)− v̄(k + 1)‖

< β1

N∑

k=0

m∑

i=1

‖ei(k + 1)‖2 + β2

N∑

k=0

c(k)2 + β3,

where β1 ∈ (0, 1), and β2 and β3 are positive constants.

Proof: The proof of i) is presented in [6, Lemma 1].
For ii), see [6, Lemma 2]. Finally, the proof of iii) follows
the line of [6, Lemma 3].

Notice that in Lemma 2, item iii), we can choose any
β1 ∈ (0, 1), at the price of modifying the values of β2 and
β3. For the presented analysis, the specific positive values
for β2 and β3 are irrelevant.

Item ii) of the following lemma is a novel derivation,
allowing the auxiliary sequences α1(k) and α2(k) to be iter-
ation dependent. This is instrumental for proving Theorem 2.

Lemma 3: Let (xi(k))k∈N, (zi(k))k∈N and (z̃i(k))k∈N,
i = 1, . . . ,m, be the sequences generated by Algorithm 1,
and x⋆ by any point in the set of optimal solutions of
problem (1). Suppose Assumptions 1 and 2 hold. Then,

i) For all k ∈ N we have that

2c(k)

m∑

i=1

z̃i(k)
T (xi(k + 1)− x⋆) +

m∑

i=1

‖ei(k + 1)‖2
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+
m∑

i=1

‖xi(k + 1)− x⋆‖2 ≤
m∑

i=1

‖xi(k)− x⋆‖2. (7)

ii) For any β1 ∈ (0, 1), there exist sequences (α1(k))k∈N

and (α2(k))k∈N such that 1− β1 − α1(k)− α2(k) ≥ 0
for all k ∈ N and that

2

N∑

k=0

c(k)

m∑

i=1

(fi(v̄(k + 1))− fi(x
⋆))

+

N∑

k=0

(1− α1(k)− α2(k)− β1)

m∑

i=1

‖ei(k + 1)‖22

+
N∑

k=0

m∑

i=1

‖xi(k + 1)− x⋆‖2 ≤
N∑

k=0

m∑

i=1

‖xi(k)− x⋆‖2

+

N∑

k=0

(

mL2α1(k) + α2(k)

α1(k)α2(k)
+ β2

)

c(k)2 + β3.

Proof: The proof of i) is omitted for brevity, as it
follows from the arguments in [6, Lemma 5]. Paper [12]
also contains the derivation of this result.

To prove ii) we use i). Indeed, consider the first term of
the left-hand side in inequality (7), and rewrite it as

2c(k)

m∑

i=1

z̃i(k)
T (xi(k + 1)− v̄(k + 1))

︸ ︷︷ ︸

V1

+ 2c(k)

m∑

i=1

z̃i(k)
T (v̄(k + 1)− x⋆)

︸ ︷︷ ︸

V2

, (8)

by adding and subtracting v̄(k+1). Now, let us consider the
terms of the right hand-side of (8) separately. First,

V1 ≥ −2c(k)L
m∑

i=1

‖xi(k + 1)− v̄(k + 1)‖, (9)

by Cauchy-Schwarz, triangle inequality, and L =
maxξ∈∪m

i=1Xj
‖gj(ξ)‖, which is well-defined by Lemma 1.

Second, we use the definition of z̃i(k) – Step 3 in Algo-
rithm 1 – into V2 to obtain (via double stochasticity of A)

V2 = 2c(k)

m∑

i=1

gi(zi(k))
T (v̄(k + 1)− x⋆). (10)

Moreover, if we add and subtract xi(k+1) and zi(k) for all
i = 1, . . . ,m into the right-hand side of (10) we obtain

V2 =2c(k)

m∑

i=1

gi(zi(k))
T (v̄(k + 1)− xi(k + 1))

︸ ︷︷ ︸

V2,1

+2c(k)

m∑

i=1

gi(zi(k))
T (xi(k + 1)− zi(k))

︸ ︷︷ ︸

V2,2

+2c(k)

m∑

i=1

gi(zi(k))
T (zi(k)− x⋆)

︸ ︷︷ ︸

V2,3

. (11)

Let us focus on the right-hand side of (11). For the first term,

V2,1 ≥ −2c(k)L

m∑

i=1

‖v̄(k + 1))− xi(k + 1)‖, (12)

by Cauchy-Schwarz. As for the middle term, we have that

V2,2 ≥ −α1(k)
m
∑

i=1

‖ei(k + 1)‖2 −m
L2

α1(k)
c(k)2 (13)

by using Cauchy-Schwarz in the term V2,2 and then ap-
plying the definition ei(k) given in (6) followed by the
relation 2xy ≤ x2 + y2 with x = L√

α1(k)
c(k) and y =

√

α1(k)‖ei(k + 1)‖ for some α1(k) ∈ (0, 1) for all k ∈ N.
Similarly, the right-most term of (11) yields

V2,3 ≥ −α2(k)
m
∑

i=1

‖ei(k + 1)‖2

−m
L2

α2(k)
c(k)2 − 2c(k)L

m
∑

i=1

‖xi(k + 1) − v̄(k + 1)‖

+ 2c(k)
m
∑

i=1

(

fi(v̄(k + 1))− fi(x
⋆)
)

(14)

for some sequence α2(k) ∈ (0, 1) for all k ∈ N. The details
that led to inequality (14) resemble the ones in (13), and are
omitted for brevity. Substituting inequalities (9), (12), (13)
and (14) into (7), and then using the result of Lemma 2, item
iii), to the term involving

∑m

i=1 ‖xi(k+1)− v̄(k+1)‖ with
L̄ = 3L, we obtain inequality of item ii). This concludes
the proof of the Lemma. See [12] for the omitted steps.

Two immediate consequences of Lemma 3 are presented
in the following proposition.

Proposition 1: Consider the result of Lemma 3, item ii),
and suppose Assumptions 1–3 hold. Then

i) We have that
∑∞

k=0

∑m
i=1 ‖ei(k)‖2 < ∞;

ii) The error sequence (ei(k))k∈N converges to zero for all
i = 1, . . . ,m;

iii) For all i = 1, . . . ,m,

lim
k→∞

‖xi(k)− v(k)‖ = 0.

Proof: See [6, Propositions 2, 3], or [12].
To prove Theorem 1, we leverage on a deterministic

version of the supermartingale theorem.
Lemma 4 ([17]): Given non-negative scalar sequences

(ℓ(k))k∈N, (u(k))k∈N and (ζ(k))k∈N that obey the recursion

ℓ(k + 1) ≤ ℓ(k)− u(k) + ζ(k).

If
∑∞

k=1 ζ(k) < ∞, then the sequence (ℓ(k))k∈N converges
and the sequence (u(k))k∈N is summable.

Proof of Theorem 1

In the view of item ii) in Lemma 3, fix a β1 ∈ (0, 1) and
choose α1(k) = α2(k) = α such that (1−2α−β1) > 0. We
now substitute inequalities (9), (12)–(14) into the inequality
of Lemma 3, item i), to obtain the inequality of Lemma 4
with3

ℓ(k) =
m
∑

i=1

‖xi(k)− x
⋆‖22, u(k) = 2c(k)

(

f(v̄(k + 1))− f(x⋆)
)

3The assumptions of Lemma 4 are satisfied because the sequence of step-
sizes is square-summable under Assumption 3 and because of the relation
given by Lemma 2, item iii), and the result of Proposition 1, item i).
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ζ(k) =
2mL2

α
c(k)2 + 6c(k)L

m
∑

i=1

‖xi(k + 1)− v̄(k + 1)‖,

(15)

As a consequence of Lemma 4, we have that the sequence
∑m

i=1 ‖xi(k)−x⋆‖ converges and that
∑∞

k=0 2c(k)
(
f(v̄(k+

1))−f(x⋆)
)
< ∞. Moreover, using the arguments presented

in [12], we can further conclude that, in fact, sequence
(‖xi(k) − x⋆‖)k∈N converges to zero, thus concluding the
proof. �

B. Proofs of Section III-B

We only present here a sketch of the proof of Theorem 2.
The reader is referred to [12] for a detailed argument. We
start the proof by writing

m∑

i=1

fi(x̂i(k + 1))− f(x⋆) ≤ f(v̂(k + 1))− f(x⋆)

+ L

m∑

i=1

‖x̂i(k + 1)− v̂(k + 1)‖, (16)

which follows from the relation in Lemma 1, item iii), and
by defining v̂(k) similarly as x̂i(k) in Theorem 2 from the
sequence (v̄(k))k∈N.

We split the argument into two parts: we first con-
sider that (17) and (18) are satisfied for positive constants
d1, d2, d3 and d4, and prove the statement of Theorem 2.
Then we return to (17) and (18), and prove the existence of
such constants. To this end, consider

f(v̂(k + 1))− f(x⋆) ≤ d1
1

S(k + 1)
+ d2

∑k

r=0 c(r)
2

S(k + 1)
(17)

L

m
∑

i=1

‖x̂i(k + 1)− v̂(k + 1)‖ ≤ d3

S(k + 1)
+ d4

∑k

r=0 c(r)
2

S(k + 1)
.

(18)

Notice the following bounds on S(k + 1) and
∑k

r=0 c(r)
2:

S(k + 1) =

k+1
∑

r=1

1√
r + 1

≥
∫ k+3

2

1√
x
dx ≥ 0.5858

√
k + 1,

(19)

k
∑

r=0

c(r)2 =
k
∑

r=0

1

r + 1
≤
∫ k+1

1

1

x
dx+ 1 ≤ ln(k + 1) + 1. (20)

The result of the Theorem 2 would then follow by sub-
stituting (19) and (20) into (17) and (18) with constants

B1 =
∑4

i=1
di

ν
and B2 = d2

ν
+ d4

ν
. This concludes the proof

of Theorem 2, provided inequalities (17) and (18) hold.
Observe that since (v̄(k))k∈N ⊂ ∩m

i=1int(Xi) and that
v̂(k) is a convex combination of v̄(k), the relation given
by (18) gives us the rate with which the generate solution
becomes feasible.

The main steps of the second part of the proof are omitted
for brevity, see [12] for the complete argument. However, we
mention here that to prove (17) we invoke Lemma 3, item ii),

with α1(k) = α2(k) = α(k), where α(k) = a
(

1− 1√
k+1

)

,

with a = (1 − β1)/2. After some algebraic manipulations,
we show that inequality (17) holds with constants

d1 = 4mD2 + β3, d2 = β2 +
8mL2

a
,

where D is defined as in Lemma 2, item i), and β2 and β3 are
the constants obtained from Lemma 2, item iii). Similarly,
we use some facts about convolution of sequences to prove
inequality (18) with constants

d3 = 2mDLµc(1)

(

1 +
mλ

2(1− q)

)

+ Lµ

(

1 +
mλ

2(1− q)

)

4mD2 + β3

1− β1 − 2α
,

d4 = Lµ

(

1 +
mλ

2(1− q)

)(

1 +
1

1− β1 − 2α

(

mL
2 2

α
+ β2

)

)

,

where α ∈ (0, 1). �
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[4] A. Nedić and A. Olshevsky, “Distributed optimization over time-
varying directed graphs,” IEEE Trans. Automat. Contr., vol. 60, no. 3,
pp. 601–615, 2015.

[5] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-Based Computation of
Aggregate Information David,” in IEEE Symp. Found. Comput. Sci.
IEEE Computer Society, 2003, p. 482.

[6] K. Margellos, A. Falsone, S. Garatti, and M. Prandini, “Distributed
Constrained Optimization and Consensus in Uncertain Networks via
Proximal Minimization,” IEEE Trans. Automat. Contr., vol. 63, no. 5,
pp. 1372–1387, 2018.

[7] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An Exact First-
Order Algorithm for Decentralized Consensus Optimization,” SIAM
J. Optim., vol. 25, no. 2, pp. 944–966, 2015.
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