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Distributed Actuator Selection: Achieving
Optimality via a Primal-Dual Algorithm

Licio Romao , Kostas Margellos , and Antonis Papachristodoulou

Abstract—This letter addresses the actuator selection
problem, i.e., given an interconnection of asymptotically
stable linear dynamical systems on a network and m pos-
sible actuators choose ν among them to achieve a certain
objective. In general, this is a combinatorial optimization
problem which is hard to solve; convex relaxations do not
usually yield an optimal solution for the original problem. In
this letter we focus on a particular instance of the actuator
selection problem, namely the formulation with the trace of
the controllability Gramian matrix as the optimization met-
ric, and show that such a choice gives rise to an integer
linear program (LP). Using properties of integral polyhe-
dra, we show through a sequence of reformulations that
the optimal solution of this problem can be determined
by means of an LP without introducing any relaxation
gap. This allows us to obtain the optimal solution using a
primal-dual distributed algorithm, thus providing a scalable
approach to the problem of actuator placement which has
been up to now performed in a centralized manner enumer-
ating all possible placement alternatives. We illustrate the
main features of our approach by means of a case study
involving a simplified model of the European power grid.

Index Terms—Actuator selection problems, large-scale
systems, optimization, distributed optimisation.

I. INTRODUCTION

IN THE past few years, an active stream of research within
the control community has been understanding and reg-

ulating complex networks with applications to health care,
neuroscience, and social networks [1]. There are various chal-
lenges in these attempts, however, achieving an implementable
solution in the aforementioned areas requires scalability and
reliability.

One important problem arising from the study of large-
scale complex networks is that of actuator and sensor selec-
tion/placement. The former aims to choose ν from m potential
actuator positions to minimise some objective function, e.g.,
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H2 norm or controllability-related metrics, while the latter
addresses a similar situation by deciding on ν sensors to
minimise metrics related to estimation error. These problems
have been extensively studied in the literature, ranging from
applications in power systems [2] to the satellite assignment
problem [3] and wireless networks [4].

Being combinatorial problems, actuator and sensor place-
ment do not have, in general, efficient algorithms to determine
their corresponding optimal solutions. The straightforward,
albeit very commonly used, approach of enumerating all possi-
ble selections, and choosing the best one according to a given
metric becomes intractable for high values of m. Even list-
ing all possible alternatives requires shared information that
in several applications might be considered as private.

An alternative approach is instead of obtaining the optimal
solution, to rely on algorithms that possess guaranteed sub-
optimality bounds, for instance, the greedy algorithm applied
to submodular functions [5]–[7]. Such algorithms have been
successfully applied to the actuator and sensor selection prob-
lems [8]–[11]. Furthermore, one can also sub-optimally solve
the actuator and sensor placement problem using convex relax-
ations [2], [12]–[14], however, without a priori guaranteed
sub-optimality bounds.

Within this context, we aim to study the actuator selection
problem using the trace of the controllability gramian as opti-
misation metric. Under this metric and asymptotic stability
of the dynamics, we show that the actuator placement prob-
lem can be equivalently posed as an Integer Linear Program
(ILP). Using properties of integral polyhedra, we show through
a sequence of reformulations that the optimal solution of this
problem can be determined by means of a Linear Program
(LP) without introducing any relaxation gap. This allows us
to exploit recent results in [15], and to determine the optimal
solution by means of a primal-dual distributed algorithm, thus
providing a scalable approach to the problem of actuator place-
ment which has been up to now performed on a centralised
manner enumerating all possible placement alternatives.

Deviating from recent attempts in the literature, we rec-
ognize the combinatorial nature of the problem but do
not rely on submodularity properties of set functions, as
in [9], [10], and [16]. Our standpoint is closer to [12] since
we use convex relaxations to study the problem. However, [12]
focuses on different optimisation metrics and provides a sub-
optimal solution to the problem. In contrast, this letter adopts
a particular, in some sense simpler, optimisation metric, but
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obtains stronger results, showing that the optimal solution of
the actuator selection problem can be obtained by means of a
linear program. The modularity of the metric used opens the
road for a distributed algorithmic implementation which is of
particular interest in large-scale complex networks.

The remainder of this letter is organized as follows.
Section II states the actuator selection problem under study,
presents an equivalent ILP formulation, and provides an
interpretation about the optimisation metric used in this letter.
In Section III we introduce some background notions based
on the properties of integral polyhedra and show that the opti-
mal solution of the ILP can be obtained by means of a LP.
We also introduce two algorithms, one decentralised (based on
dual decomposition) and one distributed, that generate optimal
solutions for the problem under study. In Section IV we illus-
trate the efficacy of our approach by means of a case study
involving a simplified model of the European power grid.

II. THE ACTUATOR SELECTION PROBLEM

A. Problem Statement

We consider the actuator selection problem using the trace
of the controllability gramian as the optimisation metric. To
this end, let m denote the number of possible actuators and
S ⊂ {1, . . . , m}, and consider

ẋ(t) = Ax(t)+ BSuS(t), (1)

where A ∈ R
n×n is a matrix that represents the dynamics of

the system and BS ∈ R
n×ns the input matrix associated with

the subset S. The state of this system is denoted by x(t) ∈ R
n

and u(t) ∈ R
ns is the input. The objective is to choose a subset

S of cardinality ν to maximise the trace of the controllability
gramian, i.e.,

maximise
S⊂{1,...,m}, |S|=ν

tr(WS), (2)

where AWS +WSAT + BSBT
S = 0.

We impose the following standing assumption on the matrix
A that describes the system’s dynamics.

Assumption 1: Matrix A is Hurwitz, i.e., its eigenvalues
have negative real part.

Note that, similar to [12], we can reformulate problem (2)
as the Boolean-convex problem

maximise
W,z

tr(W)

subject to AW +WAT +
m∑

i=1

ziBiB
T
i = 0

1Tz = ν, zi ∈ {0, 1}, ∀ i = 1, . . . , m, (3)

by associating decision variables zi, i = 1, . . . , m, to each
actuator, where Bi is of appropriate dimension. The symbol 1
stands for the vector of ones in R

m. Note that we allow Bi

to be a matrix, not necessarily a vector, and do not impose
any structure on Bi, i = 1, . . . , m. In the particular case where
each actuator is connected to only one state we have Bi = ei,
for i = 1, . . . , m, where ei is the standard unit vector.

Problem (3) can be simplified if we solve the Lyapunov
equation. We can thus obtain the equivalent ILP formulation:

minimise
z∈{0,1}m

m∑
i=1

cizi

subject to 1Tz = ν

(PILP)

where ci = −tr(Wi), AWi + WiAT + BiBT
i = 0. Note that

equivalence follows from uniqueness of the solution to the
Lyapunov equation, which is guaranteed by Assumption 1,
while ci, i = 1, . . . , m, can be computed in parallel for each
actuator position.

We could formulate problem (PILP) as one of minimising
a modular1 function over a cardinality constraint in the set of
feasible solutions, which would reduce the search for the opti-
mal solution of (PILP) to a simple sorting problem. The study
of combinatorial problems using modular and submodular
functions has been the main subject in the recent litera-
ture [7]–[10], especially because of guaranteed sub-optimal
bounds of the greedy algorithm [5], [6].

Even though in principle the solution to (PILP) can be easily
computed, this is not the case when m is large. Besides, privacy
issues may also be a concern since some actuators may not
be willing to share private data, e.g., the cost vector ci. In this
case, one could search for the optimal solution of the problem
using distributed optimisation [17].

B. Optimisation Metric Interpretation

We provide an interpretation of our choice for the optimi-
sation metric. To this end, note that maximising the trace of
the controllability gramian results in maximising the sum of
its eigenvalues, which can be thought of as a proxy for aver-
age controllability [10], [18]. At the same time, considering
full state access, tr(WS) coincides with the H2 norm of (1).
Therefore, by solving (2) we are maximising the energy of
the impulse response of all possible actuator placement alter-
natives under the hypothesis of full-state measurement. This
conclusion complies with the physical interpretation presented
in [19] (see [10] and [20] for further details).

III. DISTRIBUTED IMPLEMENTATION

A. ILP Background

Let us consider the following ILP

minimise
z∈Zn+

m∑

i=1

cT
i zi

subject to
m∑

i=1

Hizi ≤ g, (4)

where z = [zT
1 . . . zT

m], with zi ∈ Z
ni+,
∑m

i=1 ni = n, is the deci-
sion variable, g ∈ Z

p is the resource vector, and
∑m

i=1 Hizi ≤ g

1For M ⊂ R, submodular function is a set function f : 2M → R with
the property that f (S ∪ {i}) − f (S) ≥ f (S ∪ {i, j}) − f (S ∪ {j}), ∀S ⊂ M \
{i, j}. Intuitively, submodular functions have a diminishing return property,
that is, the contribution of adding an element i deteriorates when the number
of elements in S increases. Modular functions satisfy the previous inequality
with equality.
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is the coupling constraint, where Hi ∈ Z
p×ni – observe that

ni = 1 for all i = 1, . . . , m in formulation (PILP), which
implies n = m. Instances of problem (4) include but are not
limited to the knapsack and set covering problems [21]. Note
that for the results of this subsection we allow zi, i = 1, . . . , m,
to be positive integer-valued but not necessarily binary
as in (PILP).

A non-negative integer vector z is a feasible solution of (4)
if it satisfies the coupling constraint. The set of all feasible
solutions is called the feasible set, and if non-empty, (4) is
said to be feasible. We define the set of optimal solutions as
the subset of the feasible set such that the value of the objective
function is less than or equal to the value of any other vector
in the feasible set.

In general, solving an ILP problem is hard because of the
difficulty in characterizing the convex hull of the feasible set
in terms of polyhedral inequalities [21]. In this direction, [22],
[23] provide upper bounds on the difference between the opti-
mal solution of (4) and its convex relaxation by tightening
the resource vector g. However, in some special cases, we
can produce a convex relaxation that is exact, i.e., its optimal
solution produces an optimal solution for (4). For instance,
the celebrated Birkhoff-von Neumann theorem [24] states that
the extreme points of the set of doubly stochastic matrices are
permutation matrices. Using this theorem one can solve the
assignment problem, where we have m objects to assign to
m people and aim to find the allocation with minimum cost.
Note that the optimal solution for this problem is a permuta-
tion matrix, and it is often known as allocation in merit order.
The Birkhoff-von Neumann theorem provides a way to pro-
duce an optimal solution by minimising over the set of doubly
stochastic matrices instead of using the integer formulation
with permutation matrices.

Towards this direction, integral polyhedra possess important
properties that allow solving an ILP up to optimality by means
of its convex relaxation.

Definition 1: A polyhedral set P in R
m is integral when all

the extreme points of P have integer components.
The intuition behind Definition 1 is the result that a linear

function that is not unbounded over P attains its mini-
mum at some vertex of P [24, Ch. 2, Proposition 2.4.2].
We are implicitly assuming that P has at least one ver-
tex, which is the case if and only if P does not contain a
line [24, Ch. 2, Proposition 2.1.2]. A related definition in this
context is the notion of total unimodularity.

Definition 2: Matrix H ∈ Z
p×m is totally unimodular if the

determinant of each submatrix is either 0, 1, or −1.
The following result, whose proof is given

in [21, Ch. 3, Corollary 3.1], relates Definitions 1 and 2.
Lemma 1: The polyhedron P = {x ∈ R

m+|Hx ≤ g, 0 ≤ x ≤
u} is integral if and only if H is totally unimodular.

Note that, similar to the Birkhoff-von Neumann theorem,
Lemma 1 provides mechanisms to exactly solve an ILP
through its convex relaxation. Indeed, as an immediate con-
sequence of Lemma 1, we can argue that whenever matrix
H = [H1 . . . Hm

]
is totally unimodular the optimal solu-

tion of problem (4) is equal to the optimal solution of its
convex relaxation (i.e., considering z ∈ R

m+).

B. Convex Reformulation

Building on the results of Section III-A, we now focus on
the actuator selection formulation given by (PILP) and consider
its convex relaxation

minimise
0≤zi≤1, ∀i=1,...,m

m∑
i=1

cizi

subject to 1Tz = ν.

(PLP)

Proposition 1: The feasible set of (PILP) coincides with
extreme points of the polyhedron

P = {z ∈ R
m|1Tz = ν, 0 ≤ zi ≤ 1, ∀i = 1, . . . , m

}
,

i.e., the set of feasible solutions of (PLP), for all ν ∈ Z+.
Proof: First, note that P does not contain a line since 0 ≤

zi ≤ 1 for all i = 1, . . . , m, hence it has at least one extreme
point. Then, define H as previously with

Hi =
[

1
−1

]
, ∀i = 1, . . . , m, and g =

[
ν

−ν

]
. (5)

Now, let Ĥ be a square submatrix of H. We have two pos-
sible cases: Ĥ has dimension 1 or 2. In the former case,
note that either Ĥ = 1 or Ĥ = −1, which trivially satisfies
det(Ĥ) = ±1, where det(A) denotes the determinant of A. In
the latter case, observe that every 2×2 submatrix has determi-
nant zero. Therefore, by Definition 1, H is totally unimodular.
The result follows directly from Lemma 1, thus concluding
the proof.

C. Primal-Dual Algorithms

Proposition 1 shows that an optimal solution of (PILP) can
be recovered by means of (PLP). However, the latter is a linear
program. In this section we exploit this fact, and provide a
decentralised and a distributed algorithm to obtain its optimal
solution. To this end, we equivalently represent the constraints
of (PLP) as Hz ≤ g, where H and g are given by (5). The
corresponding dual problem is given by

maximise
λ≥0

−λTg+
m∑

i=1

min
0≤zi≤1

(ci + λTHi)zi (DLP)

The minimisation step required to evaluate the dual function
can be performed in parallel for each i = 1, . . . , m, making this
formulation amenable to decomposition algorithms. Second,
we have zero duality gap between problems (DLP) and (PLP)

(by strong duality arguments in linear programming), which
in turn provides an optimal solution for its integer formulation
given in (PILP).

One way to solve problem (DLP) is to use dual ascent
methods, which are encoded by

zk+1
i ∈ argmin

0≤z≤1
(ci + (λk)THi)z, i = 1, . . . , m

λk+1 ∈
[
λk + αk

(
m∑

i=1

Hiz
k+1
i − g

)]

+
, (6)

where [·]+ represents the projection of its argument on the pos-
itive orthant. Typical choices for the time-varying step-size are
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Algorithm 1 Distributed Algorithm of [15]
Require: : g, Hi, ci, ∀i = 1, . . . , m

1: z0
i ∈ [0, 1], ∀i = 1, . . . , m

2: λ0
i = 0, ∀i = 1, . . . , m

3: k = 0
4: while convergence is not achieved do
5: for i = 1 to m do
6: �k

i =
∑m

j=1 ak
ijλ

k
j

7: zk+1
i ∈ argmin0≤z≤1(ci + (�k

i )
THi)z

8: λk+1
i ∈ [�k

i + αk
(
Hiz

k+1
i − g

m

)
]+

9: ẑk+1
i = ẑk

i + αk
∑k

r=1 αr
(zk

i − ẑk
i )

10: end for
11: k← k + 1
12: end while

αk = β/(k+1) or αk = β/
√

k + 1, for some β > 0. As shown
in [25], with either choice for αk, the sequence generated in (6)
converges to the set of optimal solutions of (DLP).

Notwithstanding the progress made from the centralised
problem (PLP) to the decentralised Algorithm (6), this
approach still has some drawbacks. At each iteration, the dual
variable λ needs to be broadcast in order to perform the next
primal update, which must be sent to the central processor that
performs the dual update.

To alleviate the centralised dual update step we introduce
a time-varying communication network with edge weights ak

ij,
where ak

ij = 0 implies that node j does not share information
with node i at iteration k.

Assumption 2 (Weight Coefficients): For each k ≥ 0, ak
ij ∈

[0, 1) and there exists η ∈ (0, 1) such that ak
ii ≥ η and ak

ij >

0 implies ak
ij ≥ η. Moreover, we have

∑m
i=1 ak

ij = 1, ∀i =
1, . . . , m and

∑m
j=1 ak

ij = 1, ∀j = 1, . . . , m.
In other words, Assumption 2 requires the weight matrix

to be doubly stochastic with the property that when agents i
and j communicate then the exchanged information should be
assigned a non-zero weight, i.e., ak

ij > 0 implies ak
ij ≥ η.

Besides, we need to impose certain connectivity require-
ments. At each iteration, we define a directed graph, (V, Ek),
where V = {1, . . . , m} represents the nodes and Ek =
{(j, i) : ak

ij > 0} the edges, to capture the induced structure
of the communication network. We also define the matrix
E∞ = {(j, i) : (j, i) ∈ Ek for infinitely many k}. We then
impose the following assumption.

Assumption 3 (Connectivity and Communication): Graph
(V, E∞) is strongly connected and there exists T ≥ 1 such
that for every (j, i) ∈ E∞ agent i receives information from
a neighbouring agent j at least once every consecutive T
iterations.

We are now in a position to present Algorithm 1, which
was proposed in [15], and in contrast to (6) offers a dis-
tributed implementation. We will henceforth refer to each node
i, i = 1, . . . , m, as agent, which interacts with other agents
according to the aforementioned communication protocol. By
Algorithm 1, each agent calculates a weighted sum of the dual
variables that were calculated by neighbouring agents accord-
ing to the underlying communication structure at the previous

iteration (Step 6) to update its own dual variable (Step 8),
eliminating the need for a central agent to perform the dual
update. Additionally, observe that variable αk is a time-varying
step size, with the following property.

Assumption 4 (Time-Varying Step Size): The sequence
{αk}k≥0 is non-increasing, positive,

∑∞
k=1 αk = ∞, and∑∞

k=1(α
k)2 <∞.

A common choice for the time-varying step is αk = β
k+1 ,

for some β > 0. Assumptions 2, 3 and 4 are essential for the
convergence proof (see [15] for details).

Note that in both Algorithms 1 and (6) the primal update
is performed by the following “if then else” clause

zi(ζ ) = argmin
0≤z≤1

(ci + ζ THi)z =
{

1, ci + ζ THi ≤ 0,

0, otherwise,

where ζ = λk in (6) and ζ = �k
i in Algorithm 1. As a conse-

quence, Step 7 in Algorithm 1 and the primal update in (6) is
computationally inexpensive.

Under assumptions 2, 3 and 4, it is shown in [15] that
limk→∞ dist(ẑk, Z	) is equal to zero, where ẑk is the sequence
generated by Algorithm 1, Z	 is the set of optimal solution
of (PLP) and dist(x, X) is the distance between the point x
and the set X.

Theorem 1: Consider the actuator selection formulation
given by (2) and suppose Assumptions 2–4 hold. Then the
sequence ẑk generated by Algorithm 1 produces the optimal
objective value for (2).

Proof: By the proof of [15, Th. 2] the sequence {ẑk}k≥0 con-
verges to the set of optimal solutions of (PLP), which, through
Proposition 1, implies that the optimal objective function val-
ues of (PLP) and (PILP) coincide. However, by the equivalence
between (PILP) and (2) (see Section II) the result follows.

The proof of Theorem 1 relies on several equivalences.
These can be summarised as

(2)
	⇐⇒ (PILP)

Prop. 1⇐⇒ (PLP)
#⇐⇒ (DLP).

The left-hand side equivalence (	) stands for the formulation
of the actuator selection problem as an ILP through the steps
presented in Section II. Some ideas used in this process appear
in [12] and [16], but the last step where we convert into an ILP
had not been explored in the literature. The right-hand side
equivalence (#) is due to linear programming strong duality
(see [15] and [17]). The intermediate, instrumental equivalence
result, was established by means of Proposition 1.

Under uniqueness2 of the solution of (PLP), we can
strengthen the result of Theorem 1.

Corollary 1: Assume (PLP) admits a unique solution and
let ξ = limk→∞ ẑk. We then have that the optimal solution S	

of (2) is given by S	 = {i|ξi = 1}.
Proof: According to Theorem 1, the optimal values of (PLP)

and (2) are the same. Since the solution of (PLP) is unique,
we know that ξ = limk→∞ ẑk is well-defined and, in addition,
it is an extreme point of the set of feasible solutions of (PLP)

(by Proposition 1). Hence, it is a feasible solution for (2).

2Even without uniqueness of the solution of (PLP) we can always produce
an optimal solution for (2), however, this solution would differ according to
the iteration index (corresponding to practical convergence) where Algorithm
1 or iteration (9) is terminated.
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Due to Theorem 1 it is also optimal since ξ will achieve the
optimal value of (PLP). By the equivalence of (PLP) and (2),
S	 constitutes the optimal solution of (2), thus concluding the
proof.

Remark 1: One can prove that a similar result holds for
the decentralised algorithm in (6), namely, at the limit, the
sequence zk generated by (6) converges in terms of value to
the optimal value of (2). For the sake of brevity, we do not
present the proof here, however, it follows from the proof
of Theorem 1 by setting the weights in Assumption 2 to be
iteration invariant, and all of them equal to 1/m. Moreover,
it is worth pointing out that our main result does not depend
on the particular algorithmic choice, and other distributed or
decentralised schemes could be employed as well.

IV. NUMERICAL EXAMPLE: EUROPEAN POWER GRID

In this section, we illustrate the proposed method for the
actuator selection problem using a case study involving a sim-
plified model of the European power grid to decide the location
of HVDC links in the network.

In particular, we revisit the HVDC allocation problem stud-
ied in [10]. In general, HVDC links are employed to enhance
transient response of the power system by influencing active
and reactive power injections to damp frequency oscillations
and prevent rotor angle instability [10], [26]. The model con-
sists of a linear system that represents the European grid,
which is composed of 74 buses connected to a generator and
a constant impedance load. The linear model is obtained after
linearising the swing equations about nominal operating points
for each possible HVDC link placement. As in [10], the pur-
pose of this example is to assess the efficacy of the proposed
algorithm in a realistic setting, while from an application point
of view further investigation is needed, as in HVDC placement
decisions in the European power system controllability is just
one of several objectives, e.g., economic. More details about
the model can be found in [2] and [26], and references therein.

The linearised model has 148 states, since each bus consists
of one generator and each generator has two state vari-
ables corresponding to rotor angle and frequency dynamics.
Following [10] we suppose that any generator can be possibly
connected to any other generator in the grid, which yields 2701
possible connections, from which we want to select the best 10
placements according to the controllability trace optimisation
metric. Simple calculations show that this configuration gives
us a total of approximately 5.6 × 1027 possibilities, which is
far beyond a sorting algorithm enumerating all alternatives can
handle.

To implement Algorithm 1 all agents receive matrix A, and
each agent its own matrix Bi, i = 1, . . . , 2701, from the net-
work. Upon this, agents can locally compute their own ci by
solving the corresponding Lyapunov equation.

The convergence rate of Algorithm 1 can be improved by
introducing a sequence z̃k

i defined as

z̃k+1
i =

⎧
⎨

⎩
ẑk+1

i , k < L,
∑k

r=L αrzk+1
i∑k

r=L αr
, k ≥ L,

Fig. 1. Evolution of the objective function (top graph) and constraint
violation (bottom graph) for the sequences ẑk (solid blue line) and z̃k

(dashed red line) of Algorithm 1 for the European power model with
αk = 10

(k+1) . In the top graph, the dashed green line corresponds to the
solution of the centralised problem counterpart.

where L is defined to be a fraction of the total number
of iterations. Similar arguments used to prove convergence
of sequence {ẑ}k≥0 of Algorithm 1 to the optimal solution
of (PLP) applies to {z̃}k≥0 [15, Th. 2]. The latter sequence
alleviates the influence of bad estimates of the dual variable
in earlier steps of Algorithm 1.

In our simulations, we initialise the primal and dual vari-
ables to zero, as suggested in steps 1 and 2 of Algorithm 1.
Furthermore, we define the iteration-varying step size as
αk = β/(k + 1), with β = 10, and run 2000 iterations. We
also create a time-varying communication structure to satisfy
Assumptions 2 and 3 by alternating between two strongly con-
nected graphs, i.e., a2r

ij and a2r+1
ij are constant for all r ∈ Z+.

To guarantee conditions of Assumption 2 for each graph,
we generate a doubly stochastic matrix by forming a convex
combination of 100 randomly generated permutation matrices,
making sure we include the identity matrix to ensure ak

ii ≥ η

with η ∈ (0, 1). If the generated matrix satisfies ak
ij ≥ η

whenever ak
ij > 0 we return the matrix; in the negative case,

we repeat the process until these assumptions are achieved.
Besides, if this algorithm terminates, Assumptions 2 and 3
are satisfied with T = 2.

Figure 1 shows the evolution of the objective function (top
graph) and the constraint violation for the sequences ẑk (solid
blue line) and z̃k (dashed red line). In the top graph, the opti-
mal value of the centralised problem counterpart is shown by
means of a dashed green line. Note that, at the beginning, the
algorithm exhibits superior performance as far as the optimal
value is concerned, however, the generated primal iterates are
infeasible. As the algorithm progresses, we degrade the value
of the objective to achieve primal feasibility. Additionally, as
we can see, the sequence z̃k has a better convergence rate than
sequence ẑk (we use L = 1000 in our simulation).

For completeness, we also apply the decentralised algorithm
whose main steps are encoded by (9). As a stopping criterion
for Algorithm 1 we use primal feasibility. Figure 2 illustrates
the results with the choice of αk = 0.1/

√
(k + 1) for the

time-vanishing step size. Observe that the optimal solution
is achieved when we find a primal feasible solution, which
occurs around 3640 iterations (see zoomed areas).
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Fig. 2. Duality gap (top) and values of the primal and dual objective
values (bottom) for the dual algorithm given in (9). In the bottom graph,
the primal objective value at each iteration is denoted by the solid blue
line; the dual objective by the dashed red line; and the centralised opti-
mal by the dashed green line. A primal feasible solution is found after
approximately 3640 iterations.

Both Algorithm 1 and (6) converge to the optimal solution
of the problem, which in this case admits a unique solution
(see Corollary 1), the former being more adequate for large
scale networks because it does not need the dual variable to
be updated by a central processor. It should be mentioned
that the parameter β of the time-varying step-size, albeit not
interfering in the theoretical convergence, is decisive for the
rate of convergence.

V. CONCLUSION

Using properties of integral polyhedra, we showed that the
optimal solution of the actuator selection problem can be
obtained by means of a linear program when the trace of the
controllability gramian is employed as the optimisation met-
ric. To solve the resulting LP, we provided two primal-dual
algorithms: a decentralised one based on dual decomposi-
tion; and a distributed one that does not require a common
processor for dual updates. The efficacy of our methods
was investigated numerically on a European power grid case
study.

Interesting extensions include dealing with constraints in the
control input and increasing the privacy level in the commu-
nication between agents. Besides, it is worth noting that our
approach relies on the fact that the optimal solution using the
trace of the gramian as optimisation metric is on the vertices of
a polyhedron. Other, more general, metrics can be handled by
means of convex relaxations [2], [12]; or by greedy algorithms
if the objective is submodular [10].
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