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Abstract— We consider the scenario approach theory to deal
with convex optimization programs affected by uncertainty,
which is in turn represented by means of scenarios. An
approach to deal with such programs while trading feasibility
to performance is known as sampling and discarding in the
scenario approach literature. Existing bounds on the probability
of constraint satisfaction for such programs are not tight. In
this paper we use learning theoretic concepts based on the
notion of compression to show that for a particular class of
convex scenario programs, namely, the so called fully-supported
ones, and under a particular scenario discarding scheme, a
tight bound can be obtained. We illustrate our developments
by means of an example that admits an analytic solution.

I. INTRODUCTION

The scenario approach theory [1]–[5] is a successful ran-
domization technique to solve convex uncertain optimization
problems. It is based on representing uncertainty by means
of scenarios, accompanying the optimal solution of the
resulting scenario program with certificates on the probability
of constraint violation. The scenario approach theory was
introduced in [6] and has undergone several developments,
including tightness of the bound on the probability of con-
straint violation [2], the sampling and discarding [7] or
constraint removal scheme [8] to trade feasibility to per-
formance, extensions to non-convex programs [9], [10] and
to min-max [11] problems, and, more recently, a posteriori
assessing the scenario solution [4], [10], [12], [13], providing
game theoretic extensions [14], [15] and an extension applied
to the coverage theory for the least square estimate [16].

This paper is related to the a priori results of the scenario
approach theory that link the confidence, probability of
constraint violation, and the number of samples through a
simple combinatorial formula that holds for all probability
distributions [2], [7], [8] and all convex programs. In the
standard formulation of the scenario approach theory one
constraint is enforced for each scenario, often leading to
conservative values for the optimal objective value, espe-
cially when a large amount of scenarios is used. To mitigate
this fact, [7], [8] have developed a strategy that allows the
decision maker to discard some of the original scenarios.
This strategy was introduced in [7] and was termed ‘sampling
and discarding approach’, as well as in [8] where it was
termed ‘scenario approach with constraint removal’. Other
approaches within the scenario theory that can be used
to trade probability of constraint violation to performance
are presented in [11], [13], where [11] characterizes the
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joint probability of the risks associated with the empirical
costs of a min-max sample-based solution and [13] employs
relaxation of the constraints and an a posteriori result of
the scenario approach theory to assert with high confidence
upper and lower bounds on the probability of constraint
violation.

The main motivation for the results in this paper is the fact
that, unlike the tight bound of [2] that holds with equality for
the class of fully-supported convex optimization problems,
the bound in [7] is not tight. In fact, it is shown in [7] that
there exists an instance of a particular combinatorial con-
straint removal scheme that yields a solution that possesses
a tighter bound on the probability of constraint violation;
however, the presented argument is not constructive.

In this paper we revisit the sampling and discarding frame-
work and prove two main results for the class of fully-
supported problems: (1) We show that a tighter bound on
the probability of constraint violation can be obtained by
considering a removal scheme that consists of a cascade of
scenario programs, where at each stage the support set, a
concept at the core of the scenario approach theory that will
be formalized in the sequel, associated to the optimal solution
is removed. To establish this tighter bound we analyze
the constraint violation properties of the resulting solution
within a probably approximately correct (PAC) [17] learning
framework based on the notion of compression [18], [19];
(2) Similarly to [2], we show that the proposed bound on the
probability of constraint violation is tight by characterizing
a class of optimization problems that achieves the proposed
bound with equality. It appears that the proposed bound is
more general, and albeit not tight, is valid for any convex
scenario program under a mild non-degeneracy assumption.
This extension can be found in [20].

Section II provides some background concepts from the sce-
nario approach and learning theoretic literature. Section III
introduces the proposed discarding scheme and states our
main result. Section IV shows that the proposed result is
tight for a certain class of programs, and illustrates this by
means of an example that admits an analytic solution. Finally,
Section V concludes the paper and provides some directions
for future work. All omitted proofs can be found in [20].

II. BACKGROUND KNOWLEDGE

A. The scenario theory
Let (∆,F ,P) be a probability measure space, where ∆ is
the domain in which random variables are defined, F is a σ-
algebra of subsets of ∆, and P : ∆→ [0, 1] is a probability
measure on ∆. We assume that the probability P is time-
invariant and unknown, and that m independent samples
from P are available. We denote these samples as S =
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(δ1, . . . , δm), and refer to each element δi ∈ S as a scenario.
Note that S can be seen as an element in the product space
∆m =

∏m
i=1 ∆ and is distributed according to Pm, due to the

fact that δi’s, i = 1, . . . ,m, are assumed to be independent
and identically distributed (i.i.d.). In this context, we can
associate a useful probability space, namely, (∆m,⊗F ,Pm),
where ⊗F is the smallest σ-algebra containing

∏m
i=1 F .

Given m ∈ N, let S = (δ1, . . . , δm) be a collection of m
i.i.d. samples as explained in the previous paragraph, and
consider the optimization problem

minimize
x∈X

c>x

subject to g(x, δ) ≤ 0, for all δ ∈ S, (1)

where x ∈ Rd is the optimization variable, c ∈ Rd is a given
vector representing the objective function, g : Rd ×∆→ R
is convex in x for all δ ∈ S, and X ⊂ Rd is a closed convex
set. Note that the objective function in (1) can be considered
linear without loss of generality, as otherwise one may use
an epigraphic formulation to recast any convex problem into
the form of (1).

Assumption 1: For each m ∈ N, the solution of the opti-
mization problem (1) exists and is unique, and its feasibility
region has non-empty interior.

The uniqueness requirement is a mild assumption in most
applications and can be ensured by a tie-break rule procedure
that selects one solution among all the elements in the
optimal set of (1). Similarly, existence can be ensured by
standard techniques in variational methods, for instance, the
optimal set of (1) is non-empty if we assume that there exists
a γ ∈ R such that the set X∩{x ∈ R : c>x ≤ γ} is compact
or if X is compact.

We refer to problem (1) as a scenario program, as one
constraint is enforced for each scenario in S. Let x?(S)
be the optimal solution of (1), where the argument aims to
emphasize the dependence on the original samples given by
S. The authors in [2] proved the following result.

Theorem 1 (Theorem 1, [2]): Consider Assumption 1, and
fix ε ∈ (0, 1). Let m ∈ N be given and denote by x?(S) the
optimal solution of (1). Then we have that

Pm
{

(δ1, . . . , δm) ∈ ∆m : P{δ : g(x?(S), δ) > 0} > ε

}
≤
d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (2)

The left-hand side of Theorem 1 is composed of two nested
probabilities: the outer one represents the confidence with
which the bound is valid, and the inner one stands for the
risk incurred by the optimal solution of problem (1).

Definition 1 (Support scenario and support set): An ele-
ment δ ∈ S = (δ1, . . . , δm) is called a support scenario if its
removal changes the optimal solution x?(S) of problem (1).
The support set is the collection of all support scenarios and
is denoted by supp(x?(S)).

Definition 2 (Fully supported problems): A scenario pro-
gram is called fully supported if, with Pm probability one,
the cardinality of the support set is equal to d.

An important feature of the bound in (2) is the fact that it
holds for all convex optimization problems and all distribu-
tions P. In fact, [2] showed that the class of fully-supported
optimization problems achieves the bound of Theorem 1. In
this sense, the bound in (2) is said to be tight.

B. The sampling and discarding approach
Let m ∈ N and r < m be given, and consider the following
optimization problem

minimize
x∈X

c>x

subject to g(x, δ) ≤ 0, for all δ ∈ S \R, (3)

where x, c,X and S are as in (1), and R is a subset of
the original sample set with cardinality equal to r. Formu-
lation (3) allows scenarios to be discarded and, as such, can
be used to improve the optimal objective value with respect
to that of (1). The sampling and discarding approach [7], [8]
quantifies the probability of constraint violation associated
to the optimal solution (under Assumption 1) of (3), thus
providing the decision maker with a sound theoretical result
that can be leveraged to trade probability of constraint
violation to performance. This result is stated in the sequel.

Theorem 2 (Theorem 2.1, [7]): Consider Assumption 1,
and fix ε ∈ (0, 1). Let m > d+ r and denote by x?(S) the
optimal solution of (3). If all removed scenarios are violated
by the resulting solution x?(S), i.e., g(x?(S), δ) > 0 for all
δ ∈ R, with Pm-probability one, then

Pm
{

(δ1, . . . , δm) ∈ ∆m : P
{
δ ∈ ∆ : g(x?(S), δ) > 0

}
> ε

}
≤
(
r + d− 1

r

) r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (4)

As opposed to the tight bound of Theorem 1, the bound of
Theorem 2 is not tight. Indeed, in Section 4.2 of [7], the
authors show that there exists a class of convex optimization
programs and a discarding scheme such that the right-hand
side of (4) can be replaced by

∑r+d−1
i=0

(
m
i

)
εi(1 − ε)m−i;

however, the argument is not constructive and is limited to an
existential statement. This raises the following natural ques-
tion: can one provide tight bounds for a scenario program
with discarded constraints? In this paper, we answer the last
question by providing a class of optimization problems and
a scenario discarding scheme for which this is the case.

C. Learning theoretic background
The main results of this paper are based on some concepts
associated to the learning literature and on the interpretation
of scenario theory within this framework given in [18].

Definition 3 (Compression set): Given m ∈ N. Let S =
(δ1, . . . , δm) be an element of ∆m. Define a mapping A :
∆m → 2∆, where 2∆ represents the power set of ∆. A
subset C ⊂ S with cardinality equal to ζ is a compression
for A if δ ∈ A(C) for all δ ∈ S.
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Fig. 1: Block diagram of the proposed scheme. For a given set of scenarios S = {δ1, . . . , δm} with (`+ 1)d < m, we solve
a cascade of `+ 1 optimization programs denoted by Pk, k ∈ {0, . . . , `}. For each k, k ∈ {0, . . . , `−1}, we remove Rk(S)
scenarios with |Rk(S)| = d as in (6), hence, in total r = `d scenarios (the ones in

⋃`−1
j=0Rj(S)) are discarded. The choice

of each set of discarded scenarios depends on the initial set S, thus we introduce it as argument of Rk. The final solution
is denoted by x?(S) = x?` (S).

Roughly speaking, a subset C is a compression for the
mapping A if it assigns the same label to all scenarios in
S as if all the samples in S were used. In the statistical
learning theory this property is also known as consistency
of A(C) with respect to the samples [17]–[19]. The notion
of compression set is crucial to characterize generalization
properties of the mapping under unseen scenarios. In fact,
after adapting the notation of paper [18] to the one of this
paper, we can produce the following result.

Theorem 3 (Theorem 3, [18]): Fix ε ∈ (0, 1) and ζ < m.
If there exists a unique compression set C of cardinality ζ,
then

Pm
{

(δ1, . . . , δm) ∈ ∆m : P
{
δ ∈ ∆ : δ /∈ A(C)

}
> ε

}
=

ζ−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (5)

Note that for a fixed ε ∈ (0, 1) the right-hand side of (5)
tends to zero as m tends to infinity. Hence, Theorem 3 states
that is such a unique compression set exists the mapping
A is at least (1 − ε)-accurate as an approximation of ∆
(approximately correct), with confidence (probably) equal to
1−

∑ζ−1
i=0

(
m
i

)
εi(1− ε)m−i.

III. THE CASE OF FULLY-SUPPORTED SCENARIO
PROGRAMS

A. The proposed removal scheme

In this section we present the proposed removal scheme
for the sampling and discarding approach. To this end, let
m ∈ N and assume m i.i.d. samples from the unknown
distribution P are available. Let d be the dimension of
the given optimization problem. Fix r = `d and, for all
k ∈ {1, . . . , `}, consider

Pk : minimize
x∈X

c>x

subject to g(x, δ) ≤ 0, for all δ ∈ S \
k−1⋃
j=0

Rj(S),

where, for j ∈ {0, . . . , `− 1}, Rj(S) represents a subset of
S with cardinality d, consisting of the removed scenarios at
the j-th stage, and c,X , and g : Rd × ∆ → R are defined
as in (1) and (3). For k = 0, we define P0 as in (1), where
all the scenarios are enforced.

Assumption 2: We assume that, for all k ∈ {0, . . . , `},

i) The solution of Pk exists and is unique with Pm prob-
ability one, and its feasible set has non-empty interior;

ii) Pk is fully-supported with Pm probability one.

For each k ∈ {0, . . . , `}, we denote by x?k(S) the (unique
under Assumption 2) optimal solution of problem Pk. By
Assumption 2, item ii), the size of the support set of Pk
is equal to d with Pm probability one. Hence, for all j ∈
{0, . . . , `− 1}, we define

Rj(S) = supp(x?j (S)), (6)

which represents the support set at the j-th stage. Even
though at the `-th stage of the proposed scheme no scenarios
are discarded, we denote by R`(S) the support set associ-
ated to the optimal solution of P`, i.e., we set R`(S) =
supp(x?` (S)). The final decision under this procedure, also
denoted by x?(S), is equal to x?` (S), the solution for the last
optimization problem.

To clarify the structure of the proposed removal scheme,
we present in Figure 1 a diagram containing its main
components. The scheme has S scenarios as input and, at
each stage, the support set of the corresponding problem Pk
is removed. To further illustrate how the proposed scheme
works, we consider the pictorial example of Figure 2. Note
that d = 2, m = 6, and we remove r = 4, thus requiring
3 steps of the removal scheme of Figure 1. All the prob-
lems Pk, k ∈ {0, 1, 2}, are fully-supported, thus satisfying
Assumption 2, item ii). The objective function is given by
c>x = x2 and is indicated by the downwards pointing arrow.
The corresponding solution for the intermediate problem is
illustrated by x?k(S), for k ∈ {0, 1, 2}, and the support set
of each stage by different colour patterns. For instance, the
green constraints form supp(x?0(S)), i.e., the support set of
P0. The shaded colour under each constraint corresponds to
the region of the plane that violates that given constraint, e.g.,
we notice that x?1(S) violates both scenarios that belong to
supp(x?0(S)) and satisfies all the remaining ones.

Remark 1: Note that, for each k ∈ {0, . . . , `}, the support
scenarios Rk(S) coincide with the active constraints at the
optimal solution of Pk due to Assumption 2. Hence, once
we have solved problem Pk the support set Rk(S) can be
computed without any substantial computational burden.
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Fig. 2: Pictorial example that illustrates the scheme proposed
in Figure 1. In this case, we have that d = 2, m = 6, r = 4,
and ` = 2, and all the problems Pk, k ∈ {0, 1, 2}, satisfy
Assumption 2, item ii). The objective function is given by
c>x = x2 (indicated by the downwards pointing arrow).
The support sets are denoted by the different colour patterns.
Observe that the dashed-blue constraint is removed by the
scheme of Figure 1, but it is not violated by x?2(S).

B. Main result
We are now in the position to present the main result
of this paper. Consider the scheme of Figure 1 and let
x?(S) = x?` (S). The next theorem provides guarantees for
the probability of constraint violation associated to x?(S).
Note that the following result is not necessarily tight; in
other words, fully-supportedness is not sufficient to guarantee
a tight bound on the probability of constraint violation. It
needs to be imposed in conjunction with another assumption
(see Assumption 3 in the sequel), related to the violation
properties of the removed scenarios.

Theorem 4: Consider Assumption 2. Fix ε ∈ (0, 1), set r =
`d and let m > r+ d. Consider also the scenario discarding
scheme as encoded by (6) and illustrated in Figure 1, and let
the minimizer of the `-th program be x?(S) = x?` (S). We
then have that

Pm
{

(δ1, . . . , δm) ∈ ∆m : P
{
δ ∈ ∆ : g(x?(S), δ) > 0

}
> ε

}
≤
r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (7)

Before proceeding with the proof of Theorem 4, let us
make some comments. Note that the first ` iterations of
the scheme in Figure 1 can be considered as a particular
removal algorithm in the framework of [7]. Being so, we
have proved a strictly better bound on the probability of
constraint violation that does not involve the combinatorial
factor

(
r+d−1
r

)
and that can be achieved by a computationally

tractable removal scheme. Besides, for fully-supported prob-
lems, Theorem 4 relaxes the assumption in Theorem 2 that
requires the optimal solution to violate all the constraints
associated to the removed scenarios. For instance, in the
pictorial example of Figure 2, the dashed-blue constraint is
removed at stage 1, but it is not violated by the final solution
of our scheme.

Proof: The proof is divided into three steps. In the

interest of space, some of the arguments have been omitted
or simplified. We refer the reader to [20] for a detailed proof.
1) Definition of a suitable mapping: Consider Assump-
tion 2. Let m > (` + 1)d, and consider any set C ⊂ S,
with |C| = (` + 1)d. We consider the proposed scheme of
Figure 1, fed by C rather than S. All quantities introduced in
this section depending on S will now depend on C instead.
For a given set of indices I ⊂ C, we define

z?(I) = argmin
x∈X

c>x

subject to g(x, δ) ≤ 0, for all δ ∈ I. (8)

Recall that x?k(C) denotes the minimizer of Pk which in turn
is based on the samples in C \∪k−1

j=0Rj(C), i.e., the ones that
have not been removed up to stage k of the proposed scheme.
It thus holds that x?k(C) = z?(C \ ∪k−1

j=0Rj(C)) – note that
the argument of z? in this case depends on k, k ∈ {0, . . . , `}.
Recall also that Rk(C) = supp(x?k(C)).

Since we will be invoking the framework introduced in
Section II-C, we define the mapping A : ∆m → 2∆, with
ζ = (`+ 1)d, as

A(C) =

{{
δ ∈ ∆ : g(x?` (C), δ) ≤ 0

}
∩
{ ⋂̀
k=0

{
δ ∈ ∆ : c>z?(J ∪ {δ}) ≤ c>x?k(C),

for all J ⊂ C \ ∪k−1
j=0Rj(C), with |J | = d− 1

}}}
∪
{ `−1⋃
k=0

Rk(C)

}
=
(
A1(C) ∩ A2(C)

)
∪ A3(C). (9)

The main motivation to define the mapping in (9) is the fact
that its probability of constraint violation will be shown to
upper bound that of {δ ∈ ∆ : g(x?` (C), δ) ≤ 0}, which is
ultimately the quantity we are interested in.

Note that A(C) comprises three sets: (1) A1(C) contains all
realizations of δ for which the final decision of our proposed
scheme x?` (C) = x?(C) remains feasible. This is the set
whose probability of occurrence we are ultimately interested
to bound; (2) A2(C), the intersection of `+ 1 sets, indexed
by k ∈ {0, . . . , `}, each of them containing the realizations
of δ such that, for all subsets of cardinality d − 1 from the
remaining samples at stage k, the cost c>z?(J ∪ {δ}) is
lower than or equal to c>x?k(C). The former cost corresponds
to appending δ to any set J of d − 1 scenarios from
C \ ∪k−1

j=0Rj(C), while the latter corresponds to the cost of
the minimizer x?k(C) of Pk. Informally, this inequality is of
similar nature to that of the first set in A(C), however, rather
than considering constraint satisfaction it only involves some
cost dominance condition for each of the interim and the final
optimal solutions; (3) A3(C), which includes all scenarios
that are removed by the discarding scheme. Implicit in the
definition of mapping (9) is the fact that, for any compression
set C, all samples that are not removed in the intermediate
stages must be contained in the set A1(C) ∩ A2(C). The
following proposition establishes a basic property of any
compression associated to the mapping (9).
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Proposition 1: Consider Assumption 2. Set r = `d and let
m > (`+ 1)d. We have that C ⊂ S is a compression set for
A(C) in (9) if and only if, for all k ∈ {0, . . . , `}, we have
that x?k(C) = x?k(S).

Proof: The proof of this proposition is omitted and can
be found in [20].
2) Existence and uniqueness of a compression: A natural
compression candidate is

C =
⋃̀
k=0

supp(x?k(S)), (10)

as it consists of the support samples for Pk, k ∈ {0, . . . , `}.

Existence: Here we only sketch the main arguments. To show
that C in (10) is a compression set we show that x?k(C) =
x?k(S), k ∈ {0, . . . , `}, using induction and then use the
sufficiency part of Proposition 1. It is clear that x?0(C) =
x?0(S) due to

c>x?0(S) = c>z?(S) = c>z?(supp(x?0(S))) = c>x?0(C),

and to Assumption 2, item i). We then assume that x?j (C) =
x?j (S) for all j ∈ {0, . . . , k̄}, for some k̄ < `, and show that

c>x?k̄+1(C) = c>z?(C \ ∪k̄j=0Rj(S))

≤ c>z?(S \ ∪k̄j=0Rj(S)) = c>x?k̄+1(S), (11)

where the first and last equalities are due to (8), and the
inequality is due to the fact that C \ ∪k̄j=0Rj(S) ⊆ S \
∪k̄j=0Rj(S). Moreover, since C ⊂ S and Rj(C) = Rj(S)
for all j < k̄, we have that c>x?

k̄+1
(S) ≤ c>x?

k̄+1
(C).

This implies that x?
k̄+1

(C) = x?
k̄+1

(S) by Assumption 2,
item i), thus concluding the induction proof and showing
the existence of a compression set.

Uniqueness: Let C ′ be another compression set of size
(` + 1)d. By Proposition 1 (necessity part), we have that
x?k(C ′) = x?k(S), for all k ∈ {0, . . . , `}. Hence, we can
conclude that C = C ′ as these have the same cardinality.
This concludes the uniqueness part.
3) Linking Theorem 3 with the probability of constraint
violation: Recall that

A(C) =
(
A1(C) ∩ A2(C)

)
∪ A3(C), (12)

where the individual sets are as in (9). Recall also that A3(S)
is a discrete set. Let C ⊂ S with |C| = (`+1)d be the unique
compression defined in (10). We have that

P{A(C)} = P{A1(C) ∩ A2(C)},
≤ P{A1(C)} = P{δ ∈ ∆ : g(x?(C), δ) ≤ 0},
= P{δ ∈ ∆ : g(x?(S), δ) ≤ 0}, (13)

where the first equality is due to the fact that P{A3(C)} = 0,
since A3(C) is a discrete set and P is non-atomic, which
prevents scenarios to have accumulation points with non-
zero probability, while the inequality is due to the fact that
A1(C)∩A2(C) ⊆ A1(C). The second to last equality is by
definition of A1(C), and the last one follows from the fact
that x?(C) = x?(S).

We then have that if P{δ ∈ ∆ : g(x?(S), δ) > 0} > ε then
P{δ ∈ ∆ : δ /∈ A(C)} > ε. As a result, {(δ1, . . . , δm) ∈
∆m : P{δ ∈ ∆ : g(x?(S), δ) > 0} > ε} ⊆ {(δ1, . . . , δm) ∈
∆m : P{δ ∈ ∆ : δ /∈ A(C)} > ε}. The last statement
implies then that

Pm{(δ1, . . . , δm) ∈ ∆m : P{δ ∈ ∆ : g(x?(S), δ) > 0} > ε}
≤ Pm{(δ1, . . . , δm) ∈ ∆m : P{δ /∈ A(C)} > ε}. (14)

Therefore, since the set C in (10) is the unique compression
of A(C), by Theorem 3 we have that

Pm{(δ1, . . . , δm) ∈ ∆m : P{δ ∈ ∆ : δ /∈ A(C)} > ε}

≤
r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (15)

By (14) and (15), we obtain the result. This concludes the
proof of Theorem 4.

IV. TIGHTNESS OF THE BOUND OF THEOREM 4
A. Class of programs for which the bound is tight
The result of this section shows that the bound of Theorem 4
is tight, i.e., there exists a class of convex scenario programs
where it holds with equality. To this end, we slightly modify
the mapping defined in (9) (see [20] for more details)
and, in addition to Assumption 2, we impose the following
condition.

Assumption 3: Fix any S = {δ1, . . . , δm} ∈ ∆m and let
C ⊂ S. For any k ∈ {0, . . . , `} and δ ∈ S such that δ ∈
supp(x?k(C)), we have that g(z?(J), δ) > 0, for all J ⊂
C \

(
∪k−1
j=0 supp(x?j (C)) ∪ {δ}

)
with |J | = d.

Assumption 3 consists in a restriction on the class of fully-
supported problems. For instance, the pictorial example of
Figure 2 does not satisfy Assumption 3, even though all
the intermediate problems Pk are fully-supported, as the
dashed-blue removed constraint is not violated by the re-
sulting solution. Indeed, Assumption 3 requires that, with
Pm probability, whenever a sample belongs to the support
scenarios of any intermediate problem, then the scenario
associated with it is violated by all the solutions that could
have been obtained using any subset of cardinality d from
the remaining samples. Note that verifying Assumption 4 is
hard in general; we show in the next subsection an example
that satisfies this requirement and admits an analytic solution.
Assumption 3 is similar to the requirement of Theorem 2 [7],
[8], however, in Theorem 5 (whose proof is given in [20])
we exploit it in conjunction with the discarding scheme of
Figure 1 to show that the result of Theorem 4 is tight.

Theorem 5: Consider Assumptions 2 and 3. Fix ε ∈ (0, 1),
set r = `d and let m > r + d. Consider also the scenario
discarding scheme as encoded by (6) and illustrated in Figure
1, and let the minimizer of the `-th program be x?(S) =
x?` (S). We then have that

Pm
{

(δ1, . . . , δm) ∈∆m : P
{
δ ∈ ∆ : g(x?(S), δ) > 0

}
> ε

}
=

r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (16)
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B. An example with an analytic solution
We revisit the simple problem studied in [7] and show that
it satisfies Assumption 3. We use existing results in statistics
to compute the violation probability of the solution returned
by applying the scheme of Figure 1 to this problem and
show that the resulting violation probability coincides with
the result of Theorem 5.

To this end, fix m ∈ N and r < m, and consider the
procedure of Section III-A, which involves a sequence of
`+ 1 problems. For k = 0, . . . , r (since d = 1 in this case),
Pk is given by

minimize
x∈[0,1]

x

subject to x ≥ δi, i ∈ S \ ∪k−1
j=0Rj(S). (17)

We further assume that all samples are extracted from a
uniform distribution over the interval [0, 1]. Note that (17)
satisfies Assumption 2 and Assumption 3 (see [20] for a
detailed explanation). Besides, the optimal solution returned
by the scheme of Figure 1, due to the fact that d = 1, is
given by x?(S) = x?r(S) = maxi∈S\∪r−1

j=0Rj(S) δi, i.e., it
is equal to the r-th largest scenario, and the probability of
constraint violation is given by V (x?(S)) = 1−x?(S) since
the distribution P is uniform. We can then invoke standard
results of order statistics [21, Proposition 8.7.1] or the more
general result in [11] to conclude that the joint distribution of
(δ(1), . . . , δ(m)), where δ(i) represents the i-th largest sample,
is a Dirichlet distribution [21, Chapter 7] with all the (m+1)
parameters equal to one. As a consequence, the marginal of
r-th largest sample x?(S) = δ(r) is a beta distribution with
parameters (m− r+ 1, r), and the associated probability of
constraint violation is given by

Pm{(δ1, . . . , δm) : 1−x?(S) > ε} =

r∑
i=0

(
m

i

)
εi(1−ε)m−i,

which agrees with the violation obtained using the result of
Theorem 5 for d = 1. An alternative derivation based on
elementary probability arguments can be found in [20].

V. CONCLUSION

We revisited the sampling and discarding approach within the
scenario approach theory and derived a tight bound on the
probability of constraint violation for the obtained solution.
To this end, we analyzed a scheme to remove constraints
that is composed of a cascade of scenario programs, where
at each stage a subset of scenarios related to the support set
of the associated optimal solution is removed.

Current work involves showing that the proposed bound
is valid, albeit not tight, for any convex scenario program
that is not necessarily fully-supported. Under a mild non-
degeneracy assumption we have established such a result
in [20]. Our present analysis is limited to cases where the
number of removed scenarios is a multiple of the dimension
of the optimization problem. Current work concentrates
towards relaxing this requirement.
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