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a b s t r a c t

Discarding constraints in scenario optimization, a technique known as the sampling-and-discarding
scheme, allows the decision maker to trade feasibility to performance. Recently, a removal scheme
with a less conservative bound on the constraint violation probability of the final decision has been
proposed. In this letter, we further contribute to the theoretical properties of such a scheme by
extending the number of discarded scenarios to be arbitrary, as opposed to an integer multiple of the
dimension of the decision space. There are two facets to the results of this paper. On the one hand,
our feasibility guarantees outperform the standard ‘‘sampling-and-discarding’’ bound in the literature.
On the other hand, we highlight an inherent property of the discarding mechanism, namely, the fact
that removing a number of scenarios that is not an integer multiple of the dimension of the decision
space is likely to introduce additional conservatism.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

The scenario approach theory consists in a randomized ap-
roximation to uncertain optimization problems that involve pa-
ameters with a fixed but unknown distribution (Calafiore &
ampi, 2005, 2006; Campi & Carè, 2013; Campi & Garatti, 2008,
011, 2018; Carè, Garatti, & Campi, 2015; Garatti, Campi, & Carè,
019). At the core of this theory is the so-called scenario program,
hich consists in an optimization problem whose constraints
re enforced based on the available data. Standard results of the
cenario approach theory relate feasibility guarantees associated
ith the optimal solution to the number of available samples and
he number of removed scenarios (Campi & Garatti, 2008, 2011).
he main theorems in Calafiore (2010) and Campi and Garatti
2011), which constitute the foundation of the sampling-and-
iscarding approach to scenario programs, offer feasibility guar-
ntees for any removal scheme and allow the decision maker to
rade feasibility to performance. The resulting feasibility bound,
owever, is not tight, in contrast with a previous result of the
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scenario approach theory (Campi & Garatti, 2008) regarding sce-
nario programs without discarded scenarios whose feasibility
guarantees hold with equality for the class of the fully-supported
scenario programs (Calafiore, 2010; Campi & Garatti, 2008); a
formal definition is provided in the sequel.

Recent contributions (Romao, Margellos, & Papachristodoulou,
2020, 2022) obtain a less conservative bound on the probability
of constraint violation than the one given in Campi and Garatti
(2011). The analysis in Romao et al. (2020, 2022) focuses on a
specific removal scheme that discards scenarios in an integer
multiple of the dimension of decision space by solving a cascade
of scenario programs. Another recent paper (Romao, Margellos, &
Papachristodoulou, 2021) provides a first step towards a gener-
alization of this procedure to an arbitrary number of discarded
scenarios; however, it imposes an assumption that is hard to
verify and may not be satisfied apart from problem classes with
a specific structure. In this paper, we remove this assumption
and propose a new feasibility bound for fully-supported scenario
programs that holds for an arbitrary number of removed con-
straints. There are two facets to our results. On the one hand,
we show that our feasibility guarantees for the resulting solution
outperform the standard sampling-and-discarding bound in the
literature. On the other hand, we highlight an inherent property
of the considered removal scheme, namely, the fact that removing
a number of scenarios that is not an integer multiple of the
dimension of the decision space is likely to introduce additional
conservatism.

Hence, our result suggests that – apart from specific cases
which are, however, hard to recognize a priori (see the results
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n Romao et al. (2021)) – there is no incentive to remove scenarios
hose number does not form an integer multiple of the dimen-
ion of the decision space. This result complements (Calafiore,
010; Campi & Garatti, 2011) and the recent developments in Ro-
ao et al. (2021, 2022), encompassing all possible cases that
ould emanate within a sampling-and-discarding regime. More-
ver, our results are complementary to the ones in Alamo, Tempo,
nd Camacho (2009), where randomized optimization problems
re analyzed using the Vapnik–Chervonenkis (VC) theory. The
atter results into bounds of similar nature with respect to the
roposed ones, however, depends on the VC-dimension which
s in general difficult to compute. It is also worth mentioning
hat our work is in contrast with papers based on randomized
equential algorithms (Alamo, Tempo, Luque, & Ramirez, 2015;
alafiore, 2017; Chamanbaz, Dabbene, Tempo, Venkataramanan,
Wang, 2016), which require sampling from the unknown distri-
ution in a sequential fashion, rather than relying on an one-shot
ampling scheme as in this paper. Sequential algorithms use ad-
itional samples to define an exit condition through a validation
rocedure, which is then employed to assess the guarantees of
he final solution.

This paper is organized as follows. In Section 2, we review
he sampling-and-discarding approach to scenario programs. In
ection 3, we review the removal scheme of Romao et al. (2020,
022), while the main results of the paper are presented in
ection 4. In Section 4.1, we present a motivating example that
llustrates the main ideas of this paper. In Section 4.2, we present
he extension of the scheme studied in Romao et al. (2022)
nd state the main theorem of this paper. Section 5 compares
he proposed bound with that of Campi and Garatti (2011). The
Appendix contains the proof of the main result of Section 4.

. Background on the scenario approach theory

Let S = {δ1, . . . , δm} be a collection of independent and iden-
tically distributed (i.i.d.) samples from an unknown distribution.
We are interested in characterizing properties associated to the
optimal solution of

minimize
x∈X

c⊤x

subject to g(x, δ) ≤ 0, δ ∈ S \ R(S), (1)

with respect to unseen scenarios. We consider X ⊂ Rd, δ ∈ ∆,
ith ∆ denoting the uncertainty space, g(x, δ) : Rd

× ∆ → R,
nd R(S) is a subset of S containing scenarios that may have been

removed through a possibly iterative procedure. If R(S) = ∅ then
no scenarios are removed. We assume that ∆ is endowed with
a σ -algebra and there is an unknown probability distribution P
defined on this σ -algebra. Throughout this paper we impose the
following assumption.

Assumption 1. Assume that:

a. The solution of problem (1) exists and is unique.
b. The set X is closed and convex, and its interior is non-empty.
c. The function g(·, δ) : Rd

→ R is convex for any δ ∈ ∆ and
g(x, ·) : ∆ → R is measurable for any x ∈ Rd.

Problem (1) is called scenario program, as its constraints are
nforced based on the available scenarios in S \ R(S). As apparent
n the notation, the choice of R(S) depends on the samples in S,
which then implies that the optimal solution of (1) is a random
variable defined on ∆m; to emphasize this dependency we denote
it by x⋆(S). The uncertainty space ∆ induces both a natural σ -
algebra on ∆m and a probability measure Pm due to the i.i.d.
 p

2

assumption on1 S. Assumption 1 imposes mild restrictions on (1).
Existence of the solution is guaranteed, for instance, if we con-
sider set X to be compact. Uniqueness of the optimal solution can
always be guaranteed by means of a tie-break rule, e.g., choosing
the optimizer with the smallest norm. Non-emptiness of the
interior is a standard assumption present in the main results
of the scenario theory (Calafiore & Campi, 2005, 2006; Campi &
Garatti, 2008, 2011).

Definition 1 (Violation Probability). The function V : Rn
→ R

defined as

V (x) = P{δ ∈ ∆ : g(x, δ) > 0},

denotes the violation probability associated to x.

We are interested in V (x⋆(S)), hereafter called the probability
of constraint violation, as it measures the risk of violating the
constraints for unseen scenarios, not used to obtain x⋆(S).

The scenario approach theory produces bounds on the tail
distribution of V (x⋆(S)), as stated in Calafiore (2010) and Campi
and Garatti (2011), given by

Pm
{S ∈ ∆m

: V (x⋆(S)) > ϵ}

≤

(
r + d − 1

r

) r+d−1∑
i=0

(
m
i

)
ϵ i(1 − ϵ)m−i, (2)

here r = |R(S)| is the number of discarded scenarios. Through-
ut this paper, we will refer to bounds on the tail distribution
f the violation probability as feasibility bounds. Notice that the
easibility bound (2) is valid under the assumption that all dis-
arded scenarios are violated by x⋆(S). Besides, given m, ϵ, and d,
he bound in (2) allows the decision maker to trade feasibility
o performance by discarding scenarios in (1), as the resulting
easible set is enlarged when r increases. The left-hand side of
2) denotes the probability of constraint violation for the solution
⋆(S), while the fact that we allow for r ̸= 0, implies that
he performance/cost c⊤x⋆(S) can only improve compared to the
ase where r = 0. Therefore, increasing r reduces the cost and
he bound in (2) allows to control the probability of constraint
iolation, thus trading probabilistic feasibility to performance.
Key concepts to obtain (2) include the definition of support

onstraints, and fully-supported programs.

efinition 2 (Support Constraints, Campi & Garatti, 2008). Consider
he scenario program in (1). A scenario in S \ R(S) is said to be
support scenario (or support constraint) if its removal results

n a change in the optimal solution of (1). The set of all support
cenarios is called the support set of (1), which will be denoted
y supp(x⋆(S)).

efinition 3 (Fully-supported Problems, Campi & Garatti, 2008).
scenario program as in (1) is said to be fully-supported if for

ll m ∈ N the cardinality of the support set is equal to d with
robability one with respect to Pm.

The notion of fully-supported scenario programs is at the
ore of the scenario approach theory, especially due to the fact
hat Campi and Garatti (2008) proves that inequality (2) holds
ith equality for such programs when no scenarios are discarded
i.e., whenever r = 0).

In this paper we are interested in the case where scenarios
an be removed (i.e., r ̸= 0 in (1)). It was elusive whether there
ould exist a class of scenario programs for which (2) holds with

1 With a slight abuse of notation, throughout the paper we use S to denote
subset of ∆ of cardinality equal to m, writing S ⊂ ∆, or as an element in the
roduct space ∆m , writing S ∈ ∆m .
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quality. Only recently papers (Romao et al., 2020, 2022) show, by
nalyzing a specific removal algorithm, that such a problem class
xists. One of the concepts at the core of the analysis of Romao
t al. (2022) is that of compression set.

efinition 4 (Compression Set, Floyd & Warmuth, 1995; Margellos,
randini, & Lygeros, 2015). Let S be a set of i.i.d. scenarios from
n unknown probability distribution P, with |S| = m. Consider a
apping A : ∆m

→ 2∆, where 2∆ represents the power set of
. We say that a subset C of S with |C | = ζ is a compression set
f cardinality equal to ζ for the mapping A if for all δ ∈ S we

have that, with Pm-probability one, δ ∈ A(C), which denotes the
output of the mapping A using only the samples in C as input.

Notice the slight abuse of notation, where we use the same
symbol A for the mapping that takes as input the set C , which
belongs to ∆ζ as opposed to ∆m. One of main results of Campi
and Garatti (2008) can be interpreted under the lens of the
compression set definition given above.

Theorem 1 (Theorem 3, Margellos et al., 2015). Fix any ϵ ∈ (0, 1).
Suppose that the mapping A : ∆m

→ 2∆ possesses a unique
compression set of size ζ , which we denote by C. We then have that

Pm
{S ∈ ∆m

: P{δ ∈ ∆ : δ /∈ A(C)} > ϵ}

=

ζ−1∑
i=0

(
m
i

)
ϵ i(1 − ϵ)m−i. (3)

In Margellos et al. (2015), in the context of scenario optimiza-
tion, the mapping A is constructed as

A(C) = {δ ∈ ∆ : g(x⋆(C), δ) ≤ 0}, (4)

where x⋆(C) is the optimal solution of (1) when r = 0 (no
scenario removal is considered). In particular, it is shown that
the existence of a compression set C is related to the underlying
problem being fully supported, and in fact the (unique) compres-
sion set coincides with the support set of (1), namely, supp(x⋆(S)).
Moreover, the set C that constitutes a compression in this case
is such that x⋆(C) = x⋆(S), i.e., solving the problem only with
the compression set ‘‘compresses’’ the necessary information, and
returns the same solution had all samples been employed.

If we substitute into (3) the mapping A defined in (4) we
recover the fact that inequality (2) holds with equality for fully-
supported programs when no scenarios are discarded, which is
one of the main results of Campi and Garatti (2008). This wit-
nesses the close connection between the notion of compression
sets and the scenario approach theory.

Theorem 1 represents a crucial result towards our develop-
ments, as it produces a tight bound for the mapping A as an
approximation of the uncertainty set ∆ whenever there exists a
unique compression of cardinality ζ . Here, we will exploit that
theorem by defining a mapping A different from (4) to account
for the case where scenarios are discarded.

3. Removing scenarios in integer multiples of d

We now review the removal scheme proposed in Romao et al.
(2022). Consider the scenario program as in (1) and let r be given.
Write r = q1d + q2, where q1 and q2 are integers and 0 ≤ q2 <

d, using the division algorithm. The algorithm described in this
section, and studied in detail in Romao et al. (2022), is valid only
in the case where q2 = 0. The adaptation of this procedure to
include an arbitrary number of removed constraints that is not
necessarily an integer multiple of d will be presented in Section 4.
3

For each k ∈ {0, . . . , q1}, consider a sequence of scenario
programs given by

Pk : minimize
x∈X

c⊤x

subject to g(x, δ) ≤ 0, δ ∈ S \ Rk(S), (5)

where R0 is the empty set, Rk(S) = Rk−1(S) ∪ supp(x⋆
k−1(S)) con-

tains scenarios that have been removed up to stage k, with x⋆
k(S),

k = {0, . . . , q1}, representing the optimal solution of problem Pk.
This removal procedure results in a cascade of q1+1 optimization
problems and at each stage the support set of Pk is removed.
The final solution of the procedure is given by x⋆

q1 (S), and will
e denoted by x⋆(S). In other words, x⋆(S) is the optimal solution

of a scenario program with R(S) = Rq1 (S).
The results of Romao et al. (2022) are valid for general non-

degenerate scenario programs (see Campi and Garatti (2008)
and Romao et al. (2022) for more details); however, in this paper
we impose the following assumption on (5).

Assumption 2. For each k ∈ N, the scenario program Pk given in
(5) is fully-supported with Pm-probability one.

In other words, Assumption 2 requires that all scenario pro-
grams of the removal procedure are fully-supported. Such an
assumption is in general strong and may be difficult to satisfy. We
adopt it here to facilitate the presentation of our results, but no-
tice that this could be relaxed while leaving our results unaltered
by means of a regularization procedure as given, e.g., in Calafiore
(2010) and Romao et al. (2022).

Following the notation employed in Romao et al. (2022), we
define

z⋆(J) := argmin
x∈X

g(x,δ)≤0, δ∈J

c⊤x, (6)

as the optimal solution of a scenario program for an arbitrary
subset J of the set of samples in S. Under Assumption 1, this is
a single-valued mapping and we have that x⋆

k(S) = z⋆(S \ Rk(S)).
The main result of Romao et al. (2022), which is presented below
for convenience, establishes that the set of scenarios

C =

ℓ⋃
k=0

supp(x⋆
k(S)), (7)

which contains all the support sets of problems Pk’s, k ∈ {0, . . . ,
q1}, is the unique compression set of a certain mapping, thus
yielding a bound similar to that of Campi and Garatti (2011). The
structure of this mapping can be found in the Appendix.

Theorem 2 (Theorem 3, Romao et al. (2022)). Fix ϵ ∈ (0, 1) and
let r = q1d, m > r + d. Under Assumptions 1 and 2, denote by
x⋆(S) = x⋆

q1 (S) the optimal solution of Pq1 . We then have that

Pm
{S ∈ ∆m

: P{δ ∈ ∆ : g(x⋆(S), δ) > 0} > ϵ}

≤

r+d−1∑
i=0

(
m
i

)
ϵ i(1 − ϵ)m−i. (8)

Paper (Romao et al., 2022) also shows that the bound in
Theorem 2 is tight, as it holds with equality for a sub-class of
fully-supported optimization problems.

4. Removing scenarios arbitrarily

4.1. A motivating example

Before presenting the main results of this paper, we introduce
two examples that will offer additional interpretation for the sub-
sequent developments. Recall that our ultimate goal is to provide
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1

Fig. 1. Two realizations of the scenario program given in (1) with d = 2, m = 6, and r = 1. The ordering of the scenarios is indicated next to each constraint. The
solution obtained in the first stage of the process is denoted by x⋆

0(S). The blue and red scenarios correspond to supp(x⋆
0(S)). The red scenario is removed in the first

stage of the procedure, as it corresponds to the scenario in supp(x⋆
0(S)) with the smallest label. The final solution is denoted by x⋆(S). In case (a) the support sets

for x⋆
0(S) and x⋆(S) overlap, while in case (b) they are disjoint. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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an analysis for a removal strategy that can be used for an arbitrary
number of removed scenarios and for all scenario programs. The
most natural generalization of the removal procedure described
in Section 3 is to proceed as described in the previous section –
removing the support scenarios at each stage – and, at the (q1 +

)th stage, remove q2 among the scenarios in supp(x⋆
q1 (S)). Under

this adaptation, we seek answering the following questions: ‘‘To
what extent can the analysis carried in Romao et al. (2022) be
applied to this adapted removal procedure?’’ and ‘‘Does this result
in a probability of constraint violation involving a compression set
of cardinality equal to r + d = (q1 + 1)d + q2?’’

We start exploring these questions by means of a two-
dimensional scenario program with discarded constraints
(Calafiore, 2010; Campi & Garatti, 2011) when m = 6 and r = 1
(note that r is not an integer multiple of d = 2). Consider
a realization illustrated in Fig. 1(a), where x⋆

0(S) is the optimal
solution of P0. As r = 1, we are not allowed to remove the
supp(x⋆

0(S)) as before and need to decide whether to remove
the blue or the red scenario in Fig. 1(a). In view of obtaining a
unique compression set, one cannot allow for such ambiguity;
hence, we consider ordered scenarios and associate a label to
each constraint in Fig. 1(a). Our rule to choose a scenario from
supp(x⋆

0(S)) is that of choosing the one with smallest label, which
then results in discarding the scenario highlighted in red in
Fig. 1(a).

Following this rationale, a natural conjecture on the basis of
Theorem 2 would be to establish the existence and uniqueness
of a compression set of size three. An intuitive candidate is the
set composed by the three scenarios supporting both x⋆

0(S) and
x⋆(S) in Fig. 1(a), as these seem to be sufficient to obtain the
same intermediate solutions if only these three scenarios are
used. However, in the setting of Fig. 1(b) this may not be the case.
In fact, following the considered removal procedure, the scenario
highlighted in red will be removed in the first iteration of the
scheme, thus resulting in the final decision denoted by x⋆(S) in
Fig. 1(b). Note, however, that differently from the previous real-
ization in Fig. 1(a), the support set associated to our final decision
does not share scenarios with the support set of the previous
stage, hence the individual support sets are disjoint. In fact, any
subset of size 3 in the realization of Fig. 1(b) would produce
distinct interim solutions from x⋆

0(S) and x⋆(S), and this suggests
that there is no compression set of size 3 for the realization of
Fig. 1(b). Such an instance can happen with non-zero probability
for distributions that admit a density. Hence, these examples
illustrate that for generic cases where the interim support sets
do not overlap the compression set cardinality may no longer be
4

r + d as in Theorem 2 but, as we will show in the next section, it
is ⌈r⌉d + d, where ⌈·⌉d denotes the smallest integer multiple of d
that is greater than r .

4.2. Main result

Consider the removal procedure described in Section 3, and
recall that it consists of a cascade of q1+1 optimization problems.
When q2 ̸= 0, we need to remove q2 out of the d scenarios from
supp(x⋆

q1 (S)). As motivated in the previous section, we perform
such a choice by ordering the samples in S. Formally, this can be
done by means of a bijection σ : {1, . . . ,m} → S that assigns an
integer from 1 to m to each sample in S. Using such an ordering,
for any δi, δj ∈ S, we say that δi is smaller than, or equal to, δj
if σ−1(δi) ≤ σ−1(δj) in the usual sense. Strict inequalities can be
nterpreted analogously. The feasibility bounds presented in this
aper (see Theorem 3 below) hold for any choice of the bijection;
owever, the optimal objective value depends on that choice.
nvestigating this effect is outside the scope of this paper.

We then define the optimal solution of the procedure as
⋆(S) = z⋆(S \ Rq1+1(S)), where Rq1+1(S) = Rq1 (S)∪ R̄(S), with R̄(S)
ontaining the q2 smallest samples from supp(x⋆

q1 (S)). In other
ords, rather than defining x⋆(S) = x⋆

q1 (S), as in Romao et al.
2022), we remove q2 samples from supp(x⋆

q1 (S)) by composing
set R̄(S). Then we append R̄(S) to Rq1 (S) and solve the resulting
cenario program with constraints in S \ Rq1+1(S) being enforced.
ote that when d divides r , we have q2 equal to zero and this
rocedure becomes identical to the one analyzed in Romao et al.
2022) and described in Section 3. The description of the proce-
ure described in Section 3 and its adaptation in this section can
e summarized by defining

⋆(S) =

{
x⋆
q1 (S), if q2 = 0;

x⋆
q1+1(S), otherwise. (9)

We can extend the analysis of this removal scheme when
2 ̸= 0 and obtain the following feasibility bound on the resulting
olution.

heorem 3. Fix ϵ ∈ (0, 1) and let ⌈r⌉d be the smallest integer
ultiple of d that is greater than r, and m ≥ ⌈r⌉d + d. Let x⋆(S)
e defined as in (9). Under Assumptions 1 and 2, we have that
m
{S ∈ ∆m

: P{δ ∈ ∆ : g(x⋆(S), δ) > 0} > ϵ}

≤

⌈r⌉d+ d−1∑
i=1

(
m
i

)
ϵ i(1 − ϵ)m−i. (10)
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The proof of Theorem 3 can be found in the Appendix. It is
divided into two steps: the first one consists of removing q1d
scenarios by means of the procedure analyzed in Romao et al.
(2022) and recalled in Section 3; and the second one by analyzing
the solution of a scenario program from which only a subset of
the support scenarios is discarded. The bound in Theorem 3 could
be made explicit with respect to the number of samples using the
procedure outlined in Calafiore (2010).

Theorem 3 generalizes Theorem 2, as the latter is recovered
from the former if r = q1d for some q1 ∈ N. The quantity ⌈r⌉d
in the right-hand side of (10) introduces an additional level of
conservatism and is necessary to account for realizations as the
one depicted in Fig. 1(b). If such cases occur with zero probability,
or in other words with probability one the scenario programs
are as in Fig. 1(a), we can offer a tighter bound, with the upper
limit in the summation being r +d. Proposition 4, item (b), in the
Appendix shows this fact; a sufficient condition for this to be the
case is provided in Romao et al. (2021), and refers to a subclass
of fully-supported scenario programs.

Overall, Theorem 3 suggests that if the number of removed
scenarios is not an integer multiple of d, then the result of The-
orem 2 is no longer valid and the cardinality of the compression
set is ⌈r⌉d+d. As such, discarding scenarios that are not an integer
multiple of d does not offer any advantage as the guarantees on
constraint violation would be the same as if ⌈r⌉d+d scenarios are
removed. However, removing more scenarios tends to improve
the cost. Hence, the trade-off between feasibility and perfor-
mance is better if scenarios are removed in an integer multiple
of the dimension of the space. Note, however, that the bound
of Theorem 3 leads to a less conservative behavior compared to
the state-of-art bound summarized in (2) of the sampling-and-
discarding mechanism (Calafiore, 2010; Campi & Garatti, 2011).
We show this numerically in the next subsection.

5. Numerical examples

5.1. Comparison with the bound in Campi and Garatti (2011)

Both bounds (2) and (10) produce feasibility guarantees on the
optimal solution for a scenario program with discarded scenarios.
While bound (2) possesses a combinatorial factor that increases
its conservatism, the one in Theorem 3 has a factor ⌈r⌉d in the
summation which also generates some level of conservatism. Our
goal is compare these bounds. To this end, fix m, r, d, and β , and
determine the minimum value of ϵ (i.e., the minimum probability
of constraint violation) so that the right-hand side of both (2)
and (10) is equal to β . This then implies that for such values the
inequality V (x⋆(S)) ≤ ϵ holds, with confidence at least 1 − β .

Fix m = 200 and β = 10−6. In Fig. 2 we plot the ratio between
the ϵ returned by (2) and (10) for different values of d and r . If this
ratio is greater than one, then the probability of violation ϵ based
on (10) is strictly lower compared to the one in (2), hence the
result of Theorem 3 would be less conservative than the bound
in Campi and Garatti (2011). The number of discarded constraints
is shown in the x-axis, where different colors represent distinct
values of d as illustrated in the legend. The violation returned by
(10) is lower than that returned by (2) for the considered cases,
even for the most unfavorable case when r = 4 and d = 120.
We should also notice that for r = 24 and d = 30 the ϵ returned
by (2) is approximately equal to 0.59, while the one returned by
Theorem 3 is 0.29.
5

Fig. 2. Comparison between the bounds on the probability of constraint viola-
tion for the solution of a scenario program with discarded constraints given in
(2) and (10). To obtain these results, we fix m = 200, β = 10−6 and monitor the
atio between the resulting ϵ from bounds (2) and (10). The x-axis shows the
umber of discarded constraints. Different colors represent distinct values of d.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

.2. The minimum width interval scenario program

We now analyze the improvement of the bound of Theorem 3
ith respect to inequality (2). We run 10 000 runs of a Monte
arlo simulation, where at each run a collection of m = 200
.i.d. samples, denoted by S = {δ1, . . . , δm}, is generated from a
niform distribution in the interval [−1, 1]. We then solve

minimize
0≤x1≤x2

x2 − x1

ubject to δ ∈ [x1, x2], for all δ ∈ S \ R(S), (11)

here the scenarios in R(S), with |R(S)| = r = 141, are removed
sing the removal scheme described in Section 4. Due to the
act that the distribution is uniform for each Monte Carlo run
e obtain an analytic expression for the probability of constraint
iolation given by

(x⋆(S)) =
2 − (x⋆

2(S) − x⋆
1(S))

2
,

i.e., the length of the interval outside [x⋆
1(S), x

⋆
2(S)] times the

density, which is constant and equal to 1
2 in this case.

To compare inequality (2) with that of Theorem 3, we con-
struct the empirical cumulative distribution associated with the
such a Monte Carlo simulation. In Fig. 3 we illustrate the empir-
ical distribution (dashed blue line) and the lower bound on the
cumulative distribution given by

1 −

⌈r⌉d+d−1∑
i=0

(
m
i

)
ϵ i(1 − ϵ)m−i,

as dictated by Theorem 3 (solid black line), and

1 − min

{
1, 1 −

(
r + d − 1

r

) r+d−1∑
i=0

(
m
i

)
ϵ i(1 − ϵ)m−i

}
,

as in inequality (2) (dash-dotted red line). One can notice that
the result of Theorem 3 approximates better the resulting em-
pirical probability distribution, showing the improvement of the
proposed bound with respect to the one in (2).
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Fig. 3. Comparison between the bound in inequality (2) and of Theorem 3
or m = 200, r = 141, for the scenario program given by (11). The dashed
lue line represents the cumulative distribution of V (x⋆(S)) obtained through

10.000 iterations of a Monte Carlo simulation, the solid black line stands for the
expression 1−

∑⌈r⌉d+d−1
i=0

(m
i

)
ϵ i(1− ϵ)m−i obtained from the result of Theorem 3,

and the dash-dotted red line represents 1−min{1, 1−
(r+d−1

r

)∑r+d−1
i=0

(m
i

)
ϵ i(1−

ϵ)m−i
}. Note that the result of Theorem 3 tightly assess the empirical cumulative

distribution.

6. Conclusion

In this paper we study fully-supported scenario programs
with discarded scenarios by means of a removal scheme that is
composed by a cascade of optimization problems. We developed
the existing analysis of such a removal procedure to allow for an
arbitrary number of removed scenarios. Extensions to deal with
non-degenerate scenario programs can be achieved by means of
a regularization procedure as in Calafiore (2010) and Romao et al.
(2022). These are not included in this paper for brevity.

An important contribution of this paper is that we generalize
the analysis of the removal procedure in Romao et al. (2022) to
an arbitrary number of removed scenarios. We also highlight an
intrinsic limitation of the considered removal scheme, namely,
the fact that it is always preferable in terms of achieving a better
performance if scenarios are removed in an integer multiple of
the dimension of the decision space, and shown that the proposed
bound, though not tight, outperforms the one in Campi and
Garatti (2011).

Appendix. Proof of Theorem 3

The proof of Theorem 3 is divided into two steps. We first
study the probability of constraint violation associated to the
optimal solution of a scenario program for which only a subset of
its support scenarios is removed. Then we combine this analysis
with the removal scheme in Romao et al. (2022) to produce the
bound of Theorem 3.

Step 1: Removing a subset of the support scenarios
Consider a cascade of two scenario programs as in (1) where

one is obtained from the other by removing a subset of the
support scenarios. Denote these scenario programs by SC1 and
SC2, respectively, to distinguish them from the Pk in the removal
procedure described in Section 3. Let SC1 be

SC1 : minimize
x∈X

c⊤x

subject to g(x, δ) ≤ 0, δ ∈ S. (A.1)
6

Denote by v⋆(S) the optimal solution of (A.1) and denote, as
before, by supp(v⋆(S)) its support set. To define SC2, fix any
0 < q2 < d, and let M(S), with |M(S)| = q2, be the subset of
upp(v⋆(S)) containing the q2 smallest scenarios in supp(v⋆(S))
ccording to an ordering σ (see Section 4.2 for more details).
hen, let SC2 be

C2 : minimize
x∈X

c⊤x

subject to g(x, δ) ≤ 0, δ ∈ S \ M(S). (A.2)

e denote the optimal solution of (A.2) by w⋆(S) and its sup-
ort set by supp(w⋆(S)). To analyze the probability of constraint
iolation properties associated to w⋆(S), we first define, for an
rbitrary set of samples C ⊂ S, the set N(C) that contains
he smallest scenarios (according to the order defined by σ )
hat neither support v⋆(C) nor w⋆(C) and that has cardinality
qual to that of supp(v⋆(C)) ∩ supp(w⋆(C)). In other words, N(C)
ontains the |supp(v⋆(C)) ∩ supp(w⋆(C))|th smallest scenarios of
\ {supp(v⋆(C)) ∪ supp(w⋆(C))}.
The reader may refer to Fig. 1 for a motivation to the defini-

ions of SC1 and SC2. In a comparison with the notation of Fig. 1
e have that v⋆(S) = x⋆

0(S) and w⋆(S) = x⋆(S) (i.e., SC1 plays the
ole of P0 and SC2 that of P1); hence |supp(v⋆(C)) ∩ supp(w⋆(C))|
s equal to the number of scenarios that belong to both support
ets of SC1 and SC2, e.g., the scenarios are depicted in red in
ig. 1. To encompass the fact that the realization in Fig. 1(b) may
appen with non-zero probability and to obtain a compression
et with a cardinality that is uniform with respect to possible
ealizations, we need to append additional scenarios by forming
he set N(C) above. Similarly as in the proof of Theorem 2, we
stablish a guarantee on the probability of constraint violation
ssociated to w⋆(S) by showing that there exists a compression
cheme associated with such a removal procedure. To this end,
e introduce the mapping B : ∆m

→ 2∆

(C) = {B1(C) ∩ B2(C) ∩ B3(C)}

∪

⋃
δ∈M(C)∪N(C)

δ, (A.3)

ith B1(C) = {δ ∈ ∆ : g(v⋆(C), δ) ≤ 0}, B2(C) = {δ ∈ ∆ :

(w⋆(C), δ) ≤ 0}, and

3(C) =
{
δ ∈ ∆ : δ ≥σ max

ξ∈N(C)
ξ
}

∪ supp(w⋆(C)).

The set B1(C) ∩ B2(C) contains the scenarios that satisfy both
f the interim solutions v⋆(C) and w⋆(C), while B3(C) contains
cenarios that are either larger than or equal to the maximum
cenario2 in N(C) or that are in supp(w⋆(S)). In fact, the next
roposition shows that

= supp(v⋆(S)) ∪ supp(w⋆(S)) ∪

⋃
δ∈N(S)

δ (A.4)

s the unique compression set for (A.3).

roposition 4. Let 0 < q2 < d be a given integer. Consider the
ascade of two scenarios programs SC1 and SC2 as in (A.1) and (A.2),
espectively. The following statements hold:

(a) Suppose that the realization of Fig. 1(b) happens with non-zero
probability, i.e., suppose that, for all m ∈ N, Pm

{S ∈ ∆m
:

|supp(v⋆(S)) ∩ supp(w⋆(S))| = 0} > 0. Then, we have that:

2 Formally, the ordering σ−1 is only defined on the finite set S. However,
iven any finite set S and under mild conditions on the uncertainty space ∆,
ne may extend σ−1 to the whole space ∆ in a way that its restriction to S is

the original bijection.
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(1) There exists a realization of scenarios S such that no
compression of size smaller than 2d exists for the mapping
B in (A.3).

(2) The set C in (A.4) is the unique compression set of cardi-
nality 2d for the mapping B in (A.3).

(b) If the realization depicted in Fig. 1(b) happens with probability
zero, i.e., if for all m ∈ N we have that Pm

{S ∈ ∆ :

|supp(v⋆(S)) ∩ supp(w⋆(S))| = 0} = 0, then there exists a
unique compression set of cardinality equal to q2 + d.

Remark 1. Proposition 4 establishes compression properties
related to a removal scheme that discards only a subset of the
support scenarios of a scenario program, i.e., the set M(C) above.
A striking feature of this scheme is the fact that in the general
case (item a)) it may not yield tight bounds on the probability of
constraint violation associated to w⋆(C), as we may not have a
compression set of cardinality equal to d + q2 < 2d.

Proof. Item (a.1). We argue by contradiction. Let S ⊂ ∆ be a set
with cardinality m and assume that there exists a compression
C ′ of cardinality d′ < 2d for the mapping B in (A.3). Fix a
realization S that yields N(S) = ∅, i.e., one in which the support
sets supp(v⋆(S)) and supp(w⋆(S)) are disjoint (e.g., see Fig. 1(b)).
Note that such a realization exists due to the assumption of item
a). As the cardinality of C ′ is strictly smaller than 2d we can find
a scenario in {supp(v⋆(S)) ∪ supp(w⋆(S))} \ C ′, since the union of
the support sets has cardinality equal to 2d.

Let δ̄ be an element in {supp(v⋆(S))∪ supp(w⋆(S))} \C ′. Such a
δ̄ is either in supp(v⋆(S)) \ C ′ or in supp(w⋆(S)) \ C ′. Assume that
δ̄ ∈ supp(v⋆(S)) \ C ′, then the set supp(v⋆(S)) \ C ′ is non-empty.
We next show that there exists a δ̄ ∈ supp(v⋆(S)) \ C ′ such that
g(v⋆(C ′), δ̄) > 0. Recall that by the definition of a compression set
we must have g(v⋆(C ′), δ) ≤ 0 for all δ ∈ S, so the existence of
such a δ̄ implies that supp(v⋆(S)) must be contained in C ′. To this
end, suppose for the sake of contradiction that g(v⋆(C ′), δ̄) ≤ 0 for
all δ̄ ∈ supp(v⋆(S)) \ C ′. This means that v⋆(C ′) can be obtained
by the following scenario program

minimize
x∈Rd

c⊤x

subject to g(x, δ) ≤ 0, δ ∈ C ′
∪ supp(v⋆(S)),

as adding the scenarios in supp(v⋆(S)) \ C ′ does not change the
optimal cost. However, by the definition of support set and due to
Assumption 1, this implies that v⋆(C ′) = v⋆(S), which contradicts
the fact that supp(v⋆(S)) \ C ′ is non-empty. Hence, we must have
g(v⋆(C ′), δ̄) > 0; however, this contradicts the fact that C ′ is a
compression set for the mapping B in (A.3). In other words, if C ′

is a compression set of cardinality d then δ̄ ∈ supp(w⋆(S)) \ C ′.
Since supp(v⋆(S)) ⊂ C ′, we must have that v⋆(S) = v⋆(C ′) by

Assumption 1, which then implies M(S) = M(C ′). Changing S by
S \ {supp(v⋆(S)) ∪ M(S)} and C ′ by C ′

\ {supp(v⋆(S)) ∪ M(S)} we
can argue similarly as above to conclude that if supp(w⋆(S)) \ C ′

is not empty, then we can find an element in δ̄ ∈ supp(w⋆(S))\C ′

such that g(w⋆(C ′), δ̄) > 0, which contradicts the fact that C ′ is a
compression. This concludes the proof of item a.1).

Item (a.2). (Existence) We start the proof by showing that the
set (A.4) is a compression for the mapping B in (A.3). To this end,
we need to show that δ ∈ B(C) for all δ ∈ S. By the choice of
C in (A.4) and under Assumption 1, we note that v⋆(C) = v⋆(S)
and w⋆(C) = w⋆(S), which then implies M(C) = M(S) and
N(C) = N(S). Pick δ̄ ∈ C and let us show that δ̄ ∈ B(C). Suppose
7

δ̄ ∈ supp(v⋆(C)). In this case we have two options: (1) either δ̄ ∈

M(S), which belongs to the discrete part of B(C); or (2) δ̄ /∈ M(S),
in which case it can be either in the support of supp(w⋆(S)) or not.
If δ̄ ∈ supp(w⋆(S)), then it belongs to B1(C)∩B2(C)∩B3(C). The fact
that such a δ̄ belongs to B1(C)∩B2(C) is clear due to g(v⋆(S), δ̄) ≤

0 and g(w⋆(S), δ̄) ≤ 0, while δ̄ ∈ B3(C) follows by definition, since
upp(w⋆(S)) ⊂ B3(C). Otherwise, if δ̄ ∈ supp(v⋆(S)) \ supp(w⋆(S))
hen it either belongs to N(S), which then implies that δ̄ ∈ B(C),
or δ̄ ∈ supp(v⋆(S)) \ {supp(w⋆(S)) ∪ N(S)}, hence it belongs to
1(C)∩B2(C) by definition, and to B3(C) due to the fact that such
δ̄ must satisfy δ̄ ≥σ maxξ∈N(S) ξ . This shows that δ ∈ B(C) for
ll δ ∈ supp(v⋆(C)).
Suppose now that δ̄ ∈ supp(w⋆(C)). It is straightforward to

how that δ̄ ∈ B1(C)∩B2(C)∩B3(C) by means of similar arguments
s above, so we have that δ̄ ∈ B(C). Besides, if δ̄ ∈ N(C), then it
elongs to the discrete part of B(C). Therefore, in any case if δ̄ ∈ C ,
hen δ̄ ∈ B(C).

To conclude the existence proof, we need to show that if δ̄ ∈

\C then δ̄ ∈ B(C). Since such a δ̄ is not in the discrete part of the
apping B(C), we need to show that δ̄ ∈ B1(C) ∩ B2(C) ∩ B3(C).
s this δ̄ is feasible for both scenarios programs SC1 and SC2 we
ave that δ̄ ∈ B1(C) ∩ B2(C). It remains to show that δ̄ ∈ B3(C).
o this end, note that since δ̄ /∈ C we have immediately that

¯ >σ maxξ∈N(S) ξ , so it belongs to B3(C). This shows that C given
n (A.4) is a compression set for the mapping B in (A.3), thus
oncluding the existence part of the proof.
(Uniqueness) We divide the uniqueness proof into two cases:

(S) = ∅ and N(S) ̸= ∅. In the former case, let C ′ be another
compression set of size 2d. Fix any δ̄ ∈ C \C ′ and note that either
δ̄ ∈ supp(v⋆(C)) or δ̄ ∈ supp(w⋆(C)) (note that δ̄ cannot belong
to both sets due to the fact that N(S) = N(C) = ∅ is empty). If
δ̄ ∈ supp(v⋆(S)) then a similar argument as in item a) (changing
S by C in that argument) shows that there exists a δ̄ ∈ C \ C ′

such that g(v⋆(C ′), δ̄) > 0, which contradicts the fact that C ′ is a
compression. A similar argument also holds for δ̄ ∈ supp(w⋆(C)).

Consider now the case where N(S) ̸= ∅. We proceed similarly
as to the previous case and let C ′ be another compression of
size 2d. Fix any δ̄ ∈ C \ C ′ and note that δ̄ cannot belong to
supp(v⋆(C))∪supp(w⋆(C)), as this would contradict, as before, the
fact that C ′ is a compression. Hence, such a δ̄ must be an element
of N(C)\C ′. Besides, since δ̄ /∈ C ′ and C ′ is a compression, we must
have that δ̄ is in B1(C ′) ∩ B2(C ′) ∩ B3(C ′). However, δ̄ /∈ B3(C ′)
as we have δ̄ <σ maxξ∈N(C ′) ξ , due to the fact that C ′

⊂ S and
δ̄ /∈ supp(w⋆(C ′)) ⊂ C ′, which imply that

max
ξ∈N(C ′)

ξ > max
ξ∈N(C)=N(S)

ξ,

This contradicts the fact that C ′ is a compression, thus concluding
the proof of item (a.2).

Item (b). The proof of this item is omitted for brevity and can
be found in Romao et al. (2021). In fact, note that Proposition
1 of Romao et al. (2021) shows that a particular sub-class of
fully-supported scenario programs, namely, the one satisfying
Assumption 2 in Romao et al. (2021), has the property that Pm

{S ∈

∆ : |supp(v⋆(S)) ∩ supp(w⋆(S))| = 0} = 0 for all m ∈ N. This is
then exploited in Proposition 2 of Romao et al. (2021) to prove
item b) of Proposition 4.

Step 2: Combining Proposition 4 with (Romao et al., 2022)
To account for the general case we consider the setting of

Proposition 4, item (a). We are now in position to prove
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heorem 3. Recall that d is the dimension of the optimization
roblem Pk and we are writing r = q1d + q2, with 0 < q2 < d,
here m > ⌈r⌉d +d. Define the mapping Ā : ∆m

→ 2∆ such that

¯(C) = A(C) ∩ {B(C \ Rq1 (C)) ∪ Rq1 (C)}, (A.5)

here A is the mapping given by

(C) = (A1(C) ∩ A2(C)) ∪ A3(C), (A.6)

ith, A1(C) = {δ ∈ ∆ : g(x⋆
q1 (S), δ) ≤ 0}, A3(C) =

⋃q1−1
k=0 supp

(x⋆
k(C)), and

A2(C) =

{q1−1⋂
k=0

{
δ ∈ ∆ : c⊤z⋆(J ∪ {δ}) ≤ c⊤x⋆

k(S), for all

J ⊂ S \ Rk(S), with |J| = d − 1
}}

. (A.7)

The mapping A is associated with the removal procedure
encoded by (5) when q2 = 0 and has been introduced in Romao
et al. (2020, 2022), and B is the mapping of Proposition 4, item a),
with input given by S \Rq1 (S), rather than S. Note also that under
this choice for the input of B we have v⋆(S \ Rq1 (S)) = x⋆

q1 (S)
and w⋆(S \ Rq1 (S)) = x⋆

q1+1(S) = x⋆(S) (see Section 4.2). In
fact, under this notation, the scenario programs SC1 and SC2 in
Proposition 4, item a), correspond to Pq1 and Pq1+1, respectively,
in the description of Section 3.

We will show that the subset of the scenarios given by

C =

q1⋃
k=0

supp(x⋆
k(S)) ∪ supp(x⋆(S)) ∪

⋃
δ∈N(S)

δ (A.8)

is a compression set for the mapping Ā in (A.5) – uniqueness will
be shown in the sequel. First, note that such a C can be written
as

C = C1 ∪ C2, C1 =

q1⋃
k=0

supp(x⋆
k(S)),

C2 =supp(x⋆
q1 (S)) ∪ supp(x⋆(S)) ∪

⋃
δ∈N(S)

δ. (A.9)

The fact that C in (A.8) forms a compression set for the mapping
Ā follows trivially since C1 and C2 are compression sets for the
removal procedure encoded by (5) due to Theorem 4 in Romao
et al. (2022) and Proposition 4, item a), i.e., δ ∈ A(C) ∩ {B(C \

Rq1 (C))∪Rq1 (C)} for all δ ∈ S. Besides, observe that the cardinality
of C is equal to (q1 + 2)d = ⌈q1d + q2⌉d + d = ⌈r⌉d + d due to
definition of set N(S) given in Proposition 4, item a), and to the
relation r = q1d + q2.

We now show that the set C in (A.8) is the unique compression
set of cardinality equal to ⌈r⌉d + d for the mapping in (A.5).
Suppose C ′ is another compression set of cardinality equal to
⌈r⌉d + d for Ā. This means that δ ∈ Ā(C ′) for all δ ∈ S. However,
by the results in Romao et al. (2022), we must have C1 ⊂ C ′;
otherwise, there would exist another compression set of size
(q1 + 1)d for the mapping A. We also obtain that δ ∈ B(C ′) for all
δ ∈ S. Since C ′

\Rq1 (S) ⊂ S \Rq1 (S), by Proposition 4, we must also
have that C2 ⊂ C . However, as the cardinality of C1 ∪ C2 is equal
to ⌈r⌉d + d, this implies that C ′

= C , thus showing uniqueness of
the compression set C in (A.8).

It remains to show how the existence and uniqueness of a
compression set for the mapping Ā can be used to produce the
8

bound of Theorem 3. To this end, recall that (the dependence on
C of the inner sets is omitted to simplify the notation)

Ā(C) = {(A1 ∩ A2) ∪ A3}  
A(C)

∩ {(B1 ∩ B2 ∩ B3) ∪ B4}  
B(C\Rq1 (C))∪Rq1 (C)

,

where we have defined B4 = Rq1 ∪
⋃

δ∈M∪N δ, which contains
ll the removed scenarios and potentially additional scenarios
hat compose the set N(C) described in Proposition 4. After some
anipulations, we show that

¯(C) ⊂ (A1 ∩ A2 ∩ B1 ∩ B2 ∩ B3) ∪ (A3 ∪ B4)

= (A1 ∩ A2 ∩ B2 ∩ B3) ∪ (A3 ∪ B4), (A.10)

here the second equality holds due to the fact that x⋆
q1 (C) =

⋆(C \ Rq1 (C)), which in turn implies that A1(C) = B1(C \ Rq1 (C)).
ur ultimate goal is to bound the probability of B2. We can then
se (A.10) to obtain
m
{(δ1, . . . , δm) ∈ ∆m

: P{δ /∈ B2(C \ Rq1 (C))} > ϵ}

≤ Pm
{(δ1, . . . , δm) ∈ ∆m

: P{δ /∈ Ā(C)} > ϵ}.

owever, note that the left-hand side of the above inequality is
he probability of constraint violation we are interested in and
he right-hand side can be upper bounded – due to Theorem 1 (or
heorem 3 in Margellos et al. (2015)) and to the fact that there
xists a unique compression set of size ⌈r⌉d +d (as shown above)
by the right-hand side of inequality (10). This concludes the
roof of Theorem 3.
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