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Abstract— This paper addresses the full-order filtering prob-
lem with low- and middle-frequency H∞ specifications for
continuous-time linear systems. Two distinct extensions of the
KYP Lemma are used to produce synthesis conditions capable
to cope with the frequency specifications. A comparison between
the results obtained with the two extensions in terms of
numerical complexity and the bound provided for the H∞
norm is made by means of numerical examples. The design
conditions, given in the form of linear matrix inequalities,
can also cope with polytopic time-invariant linear systems.
Two main contributions distinguish this paper from previous
results: i) a simpler condition to assure asymptotic stability of
the filtered system; ii) a new synthesis condition based on an
alternative extension of the KYP Lemma.

I. INTRODUCTION

The Kalman-Yakubovich-Popov Lemma (KYP) is one

of the most important theoretical results in control theory.

By establishing an equivalence between frequency domain

inequalities and a linear matrix inequality (LMI), the KYP

Lemma can be used to check, for instance, positive realness

or boundedness of a rational transfer function by means of a

convex optimization problem. A simple proof of this lemma

can be found in [1].

Besides providing theoretical foundation to solve several

control problems, the standard KYP Lemma cannot cope

with finite-frequency specifications. In this direction, some

extensions of the KYP Lemma have been proposed in the

literature to deal with these requirements. First, [2] estab-

lished an LMI-based necessary and sufficient condition to

verify whether a frequency inequality holds in segments of

imaginary axis and of the unit circle, result known as the

generalized KYP (gKYP) Lemma. Some improvement and

extra generalizations for the gKYP Lemma were presented

in [3] and [4]. Second, [5] provided another extension of the

KYP Lemma using a slightly different approach. Actually,

instead of using the S-procedure as in [2], this last extension

uses projection arguments to prove the equivalence between

a new set of LMI conditions (including slack variables) and

the original frequency-domain inequalities.

These aforementioned extensions paved the way for the

development of new LMI conditions addressing classical

problems in control theory with H∞ frequency specifications,

such as state-feedback control, the observer-based estimation
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and filter design [6], [7], [8]. Particularly in the context of

full-order filtering, the main drawback is that the available

conditions are only sufficient, even for precisely known

systems (not affected by uncertainties). In some situations

it is possible to prove the necessity, as in [8] for continuous-

time systems with middle-frequency specification, but the

filter realization is given in terms of complex matrices and

might not be asymptotically stable.

This paper furthers into the design of full-order H∞ filters

with frequency specification. The methodology uses the

extensions for the KYP Lemma proposed in [2] and in [5] to

develop different synthesis conditions for the filtering prob-

lem, comparing the advantages and disadvantages in terms

of numerical complexity and accuracy of the H∞ guaranteed

costs, specially when the systems to be filtered are affected

by polytopic uncertainties. The main contributions of this

paper are twofold: i) a new approach to ensure asymptotic

stability for the filtered system; ii) a design condition for the

filtering problem using the extension for the KYP proposed

in [5]. Numerical examples are presented to illustrate the

results, including a comparison with the condition in [7].

This paper is organized as follows. Section II states the fil-

tering problem with finite-frequency specification. Section III

shows the basic results and preliminaries that are necessary

for the presentation of the proposed results. Section IV es-

tablishes two synthesis procedures in terms of LMIs and also

presents a discussion about imposing asymptotic stability for

the designed filter. Section V presents numerical comparisons

of the proposed synthesis conditions. Finally, Section VI

presents the final comments and conclusions.

The notation used throughout this paper is standard. Real

and complex vectors spaces of dimension n×m are denoted

by Rn×m and Cn×m, respectively. For a matrix A ∈ Cn×n,

A∗ represents its conjugate transpose (transpose for real

matrices). The operator He(A) = A+A∗ is used to shorten

formulas. For hermitian (symmetric) matrices, A≻ 0 (A ≺ 0)
means that A is positive (negative) definite. A symmetric term

in a matrix defined by blocks is denoted by ⋆. The identity

(zero) matrix is denoted by I (0). The Kronecker product

between matrices A and B is denoted by A⊗B. The notation

min.X f (X) s. t. g(X)≺ 0 indicates an optimization problem,

i.e., minimize f (X) subject to g(X) on the cone of negative

definite matrices.

II. PROBLEM FORMULATION

For simplicity, the conditions are developed for precisely

known linear systems in terms of LMIs. The extension
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to cope with uncertain state space matrices in polytopic

domains is immediate (see Section V).

Consider the asymptotically stable linear time-invariant

system with state-space representation given by

ẋ(t) = Ax(t)+Bww(t)

z(t) =Czx(t)+Dzww(t)

y(t) =Cyx(t)+Dyww(t),

(1)

where x ∈ R
n is the state vector, w ∈ R

r is a exogenous

input, z ∈Rp is the output to be estimated, and y ∈Rq is the

measured output.

The goal is to design an asymptotically stable, full-order

filter, whose state-space representation is given by

ẋ f (t) = A f x f (t)+B f y(t)

z f (t) =C f x f (t)+D f y(t),
(2)

where x f ∈ Rn and z f ∈ Rp, such that the H∞ norm of

the transfer matrix from the exogenous input w to the error

e = z− z f is minimized in either low- or middle-frequency

intervals. In other words, given the transfer matrix from w

to e

H(s) = C(sI −A)−1
B+D, (3)

with

[

A B

C D

]

=






A 0 Bw

B fCy A f B f Dyw

Cz −D fCy −C f Dzw −D f Dyw




 , (4)

the problem can be reformulated as: find matrices

(A f ,B f ,C f ,D f ), with A f Hurwitz, such that ‖H(s)‖∞ <
γ,∀s= jω , where ω ∈ [0,ωℓ] for low-frequency specification

or ω ∈ [ω1,ω2], 0 < ω1 < ω2, for middle-frequency specifi-

cation.

To ease the presentation, the filtering problem with low-

and middle-frequency specifications are referenced from this

point by LF and MF filtering, respectively.

III. BASIC RESULTS

Extensions of the standard KYP Lemma are the basis for

obtaining a solution for the LF and MF filtering problems.

In this section some preliminary results related to these

extensions are presented. The reader is refereed to [9], [2],

[5] for more details.
First and foremost, it is important to notice that there exist

a homeomorphism almost everywhere between the curve1

Λ(Φ,Ψ) =

{

s ∈ C :

[

s
1

]∗

Φ
[

s
1

]

= 0,

[

s
1

]∗

Ψ
[

s
1

]

≥ 0

}

(5)

on the s-plane and the curve

Λ(Φ0,Ψ0) =

{

v ∈ C :

[

v
1

]∗

Φ0

[

v
1

]

= 0,

[

v
1

]∗

Ψ0

[

v
1

]

≥ 0

}

, (6)

where

Φ0 =

[
0 1

1 0

]

, Ψ0 =

[
α β
β γ

]

, α ≤ γ, (7)

1In [2], necessary and sufficient conditions for this set not be a trivial or
empty curve are presented.

on the v-plane. That is, there exits a continuous invertible

map T : C→ C defined as

T (s) =
b− ds

cs− a
,

where the coefficients a,b,c and d are the entries of the

matrix T ∈ C2×2 such2 that

Φ = T ∗Φ0T, Ψ = T ∗Ψ0T, T =

[
a b

c d

]

.

The continuous inverse of T (s), called T −1(v), is defined

as

T
−1(v) =

av+ b

cv+ d
,

almost everywhere. References to the coefficients of the map

T (s) and to the parameters of equation (7) are made from

this point on without warning.

The following lemma states a test to verify whether a

frequency domain inequality holds by means of semidefinite

programming, being central for the results presented in this

paper.

Lemma 1 (see [5]): Let Φ ∈C2×2,Ψ ∈C2×2, Θ∈Cn+r,

A ∈Rn×n and B ∈Rn×r, with det(sI−A) 6= 0, ∀s ∈ Λ(Φ,Ψ)
be given. The following conditions are equivalent:

i) The frequency domain inequality
[

(sI −A)−1
B

I

]∗

Θ
[

(sI −A)−1
B

I

]

≺ 0

holds ∀s ∈ Λ(Φ,Ψ).
ii) There exist matrices 0≺Q=Q∗ ∈Cn×n, P=P∗ ∈Cn×n,

such that
[
A B

I 0

]∗

(Φ⊗P+Ψ⊗Q)

[
A B

I 0

]

+Θ ≺ 0.

iii) There exists matrices F ∈Cn×n and G ∈Cr×n such that

He

{[
F

G

]
[
I jω̃iI

]
(T ⊗ I)

[
A B

I 0

]}

+Θ≺ 0, i = 1,2,

with ω̃1 =−|γ/α|1/2 and ω̃2 = |γ/α|1/2.

Since this paper is concerned with the minimization of the

H∞ norm in frequency intervals, matrix Θ is fixed as
[
C

T
C C

T
D

D
T
C D

T
D− γ2I

]

and condition i) becomes ‖H(s)‖∞ < γ,∀s ∈ Λ(Φ,Ψ).
At this point, it is worthwhile noting that although the

condition iii) of Lemma 1 is already suitable for full-

order filtering purposes, condition ii) still requires some

manipulation. First, using the above choice for Θ, condition

ii) can be rewritten as






A B

I 0

C D

0 I






∗



(Φ⊗P+Ψ⊗Q) 0

0

[
I 0

0 −γ2I

]










A B

I 0

C D

0 I




≺ 0.

2The existence of such a T has been proved in [2], provided that the
set (6) represents a curve.
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Then, after some algebraic manipulations, one can note that

condition ii) is equivalent to




A B

I 0

0 I





∗


R11

[
0

C
T
D

]

[
0 D

T
C
]

D
T
D− γ2I









A B

I 0

0 I



≺ 0, (8)

with

R11 = (Φ⊗P+Ψ⊗Q)+

[
0 0

0 C
T
C

]

.

Hence, an equivalent condition to ii) can be obtained by

means of the Finsler’s Lemma [10], [11]. This result is

presented in the next lemma.
Lemma 2: Given matrices Φ ∈ C2×2,Ψ ∈ C2×2, Θ ∈

C
n+r, A ∈ R

n×n and B ∈ R
n×r, with det(sI −A) 6= 0, ∀s ∈

Λ(Φ,Ψ). The following condition is equivalent to the con-

ditions of Lemma 1:

i) There exist matrices 0 ≺ Q = Q∗ ∈ Cn×,P = P∗ ∈
Cn×n,L ∈ Cn×n,M ∈ Cn×n and N ∈ Cr×n such that







(Φ⊗P+Ψ⊗Q) 0

[
0

C
T

]

0 −γ2I D
T

[
0 C

]
D −I







+He

{





L

M

N

0






[
−I A B 0

]

}

≺ 0.

Proof: The proof follows from the discussion that

precedes the lemma, and it is omitted for brevity.
Remark 1: Note that when the 2× 2 block

[

−γ2I D
T

D −I

]

is negative definite, variable N can be zeroed without loss

of generality (this result is a consequence of the projection

lemma [10]). Indeed, by a Schur’s complement argument

this block is negative definite if and only if inequality D
T
D−

γ2I ≺ 0 holds. This is not a strong assumption (e.g., it would

be trivially satisfied when D= 0), so it is assumed to be true

throughout this paper.
As showed in the beginning of this section, the choices

for matrices Φ and Ψ define a curve on the complex

plane. Considering that this paper copes with LF and MF

specifications, the values for Φ and Ψ that are important for

the results are

Φ = Φc =

[
0 1

1 0

]

,

and

Ψ = Ψ1 =

[
−1 0

0 ω2
ℓ

]

, Ψ = Ψ2 =

[
−1 jωc

− jωc −ω1ω2

]

.

The pair (Φc,Ψ1) generates a low-frequency interval [0,ωℓ];
and the pair (Φc,Ψ2) produces a middle-frequency interval

of the form [ω1,ω2] (See [2] for more details).
Having introduced the necessary framework, the next

section presents the extensions of the conditions of Lem-

mas 1 and 2 for solving the LF and MF frequency filtering

problems.

IV. SYNTHESIS CONDITIONS

The conditions of Lemmas 1 and 2 are necessary and

sufficient to certify performance in frequency intervals. The

goal of this section is to provide synthesis conditions for the

filtering problem. Note that even though several papers in the

literature dealt with this problem [6], [12], [7], [8], the main

contribution of this paper lies on the proposition of LMIs

for the LF and MF filtering design problem using condition

iii) of both Lemmas 1 and 2. In this view, this paper also

aims to clarify the differences in terms of a bound for the

H∞ norm in LF and MF intervals using different extensions

of the KYP Lemma, as exposed in the next two theorems.

Theorem 1: Consider the linear time-invariant system

in (1) and the pair of matrices (Φc,Ψ1) that defines a low-

frequency interval of the form [0,ωℓ], ωℓ > 0. The following

conditions are equivalent.

i) There exists a filter realization (A f ,B f ,C f ,D f ) such that

‖H(s)‖∞ < γ,∀s = jω ,ω ∈ [0,ωℓ].
ii) There exist hermitian matrices Q11,Q22,P11,P22 ∈Cn×n,

matrices Q12,P12,M11,M21, K̂,MA f ∈Cn×n, MB f ∈Cn×q

such that inequality (9) holds.

iii) There exist matrices F11,F21, K̂,MA f ∈ Cn×n, MB f ∈
Cn×q such that inequalities (10) hold for i = 1,2 with

ω̃1 = ωℓ and ω̃2 =−ωℓ.

The filter realization that satisfies condition i) is obtained by

A f = K̂−1MA f , B f = K̂−1MB f , and C f and D f are variables

of the optimization problem.

Proof: The relation i) ⇔ ii) can be demonstrated as

follow. First, define matrices

Q =

[
Q11 Q12

Q∗
12 Q22

]

, P =

[
P11 P12

P∗
12 P22,

]

, M =

[
M11 K̂

M21 K̂

]

,

and note that with these structures the products between

matrix M and matrices A and B, whose expressions are

presented in (4), are

MA=

[
M11A+MB fCy MA f

M21A+MB fCy MA f

]

, MB=

[
M11Bw +MB f Dyw

M21Bw +MB f Dyw

]

.

Hence, inequality (9) can be rewritten as






−Q P−M∗ 0 0

⋆ ω2
ℓ Q+He(MA) MB C

∗

⋆ ⋆ −γ2I D
∗

⋆ ⋆ ⋆ −I






≺ 0,

or, in view of Lemma 2, as






(Φc ⊗P+Ψ1 ⊗Q) 0

[
0

C
T

]

0 −γ2I D
T

[
0 C

]
D −I







+ He

{





0

M

0

0






[
−I A B 0

]

}

≺ 0.

Then, the equivalence i)⇔ ii) is established using Lemma 2

if and only if the following assertions hold true: i) the

blocks that compose the second column of variable M can be

made equal; ii) variables L and N can be eliminated without
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−Q11 −Q12 P11 −M∗
11 P12 −M∗

21 0 0

⋆ −Q22 P∗
12 − K̂∗ P22 − K̂∗ 0 0

⋆ ⋆ ω2
ℓ Q11 +He(M11A+MB fCy) ω2

ℓ Q12 +(M21A+MB f Cy)
∗+MA f M11Bw +MB f Dyw (Cz −D f Dyw)

∗

⋆ ⋆ ⋆ ω2
ℓ Q22 +He(MA f ) M21Bw +MB f Dyw −C∗

f

⋆ ⋆ ⋆ ⋆ −γ2I (Dzw −D f Dyw)
∗

⋆ ⋆ ⋆ ⋆ ⋆ −I










≺ 0, (9)







He(F11A+MB f Cy − jω̃iF11) MA f +(F21A+MB fCy)
∗− jω̃iK̂ + jω̃iF

∗
21 F11Bw +MB f Dyw (Cz −D f Dyw)

∗

⋆ He(MA f − jω̃iK̂) F21Bw +MB f Dyw −C∗
f

⋆ ⋆ −γ2I (Dzw −D f Dyw)
∗

⋆ ⋆ ⋆ −I






≺ 0, i = 1,2. (10)

loss of generality. The former statement is proved using the

arguments of paper [13], which shows that this constraint

can be made without loss of generality. The latter is verified

with a projection argument. In fact, variables L and N can

be eliminated from the initial formulation if and only if the

inequality

Z∗







(Φc ⊗P+Ψ1 ⊗Q) 0

[
0

C
T

]

0 −γ2I D
T

[
0 C

]
D −I












I 0 0

0 0 0

0 I 0

0 0 I






︸ ︷︷ ︸

Z

≺ 0

is satisfied; in other words, if and only if inequality




−Q 0 0

0 −γ2I D
∗

0 D −I



≺ 0

holds. Observe that this inequality is always valid with the

assumption of Remark 1 and because matrix Q appears in

the (1,1) block in the left-hand side of inequality (9).

For the equivalence iii) ⇔ i), a similar strategy is used.

After applying Schur’s complement with respect to the (5,5)
block in the matrix of inequality (10) and defining

F =

[
F11 K̂

F21 K̂

]

, FA=

[
F11A+MB fCy MA f

F21A+MB fCy MA f

]

,

FB=

[
F11Bw +MB f Dyw

F21Bw +MB f Dyw

]

,

this inequality can be rewritten as

He

{[
F

0

]
[
I − jω̃iI

]
(T ⊗ I)

[
A B

I 0

]}

+

[
C
∗
C C

∗
D

D
∗
C D

∗
D− γ2I

]

≺ 0, i = 1,2,

where matrix T defines the homeomorphism between

Λ(Φ0,Ψ0) and Λ(Φc,Ψ1). For the low-frequency range, the

coefficients of matrix Φ0 are α = −1, β = 0, and γ = ω2
ℓ ,

therefore T (s) = s. In this way, as showed in condition iii)
of Lemma 1, ω̃1 = |ωℓ| and ω̃2 = −|ωℓ|.

Therefore, the equivalence follows from analogous ra-

tionale used to establish i) ⇔ ii), that is, proving that the

variables that compose the second column of F can be made

equal and that variable G can be eliminated, and then using

the equivalence i)⇔ iii) of Lemma 1.
Theorem 2: Consider the linear time-invariant system

in (1) and the pair of matrices (Φc,Ψ2) that defines a middle-

frequency interval [ω1,ω2]. The following conditions are

equivalent.

i) There exists a filter realization (A f ,B f ,C f ,D f ) such that

‖H(s)‖∞ < γ,∀s = jω ,ω ∈ [ω1,ω2].
ii) There exist hermitian matrices Q11,Q22,P11,P22 ∈Cn×n,

matrices Q12,P12,M11,M21, K̂,MA f ∈Cn×n, MB f ∈Cn×q

such that inequality (11) holds, where

R34 =−ω1ω2Q12 +(M21A+MB fCy)
∗+MA f .

iii) There exist matrices F11,F21, K̂,MA f ∈ C
n×n, MB f ∈

Cn×q such that inequality (10), with ω̃1 = ω1 and ω̃2 =
ω2, hold.

The filter realization that satisfies condition i) is obtained by

A f = K̂−1MA f , B f = K̂−1MB f , and C f and D f are variables

of the optimization problem.
Proof: The proof is similar to the one of Theorem 1

and is omitted for brevity.
Even though Theorems 1 and 2 provide necessary and

sufficient conditions for the filter design problem with LF

or MF specifications, the matrices A f obtained for the filter

realization may not come out Hurwitz. To surpass this issue,

an additional condition that assures asymptotic stability for

the system in (2) is needed.
Suppose that inequality (9) holds. In this case, the extra

condition

K̂ + K̂∗ ≻ 0, (12)

guarantees the desired stability of A f , because (12) and the

(4,4) block in (9) imply the asymptotic stability of matrix A f

(Hurwitz matrix). To verify this claim, just substitute MA f =
K̂A f .

Similarly, observing the (2,2) block of inequality (10),

one can note that the restriction K̂ = K̂∗ and inequality K̂ ≻ 0

ensures asymptotic stability of A f when using (10).
On the other hand, if inequality (11) is satisfied then

asymptotic stability cannot be imposed by adding a constraint

that uses only variables of the original problem. For this case,

the following inequalities are used

W ≻ 0,

[

−He(K̂) W +MA f − ξ K̂∗

⋆ ξ He(MA f )

]

≺ 0, (13)

4290

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on October 13,2020 at 20:41:31 UTC from IEEE Xplore.  Restrictions apply. 












−Q11 −Q12 P11 + jωcQ11 −M∗
11 P12 + jωcQ12 −M∗

21 0 0

⋆ −Q22 P∗
12 + jωcQ∗

12 − K̂∗ P22 + jωcQ22 − K̂∗ 0 0
⋆ ⋆ −ω1ω2Q11 +He(M11A+MB f Cy) R34 M11Bw +MB f Dyw (Cz −D f Dyw)

∗

⋆ ⋆ ⋆ −ω1ω2Q22 +He(MA f ) M21Bw +MB f Dyw −C∗
f

⋆ ⋆ ⋆ ⋆ −γ2I (Dzw −D f Dyw)
∗

⋆ ⋆ ⋆ ⋆ ⋆ −I










≺ 0 (11)

where 0 ≺ W = W ∗ ∈ Rn×n and 0 < ξ ∈ R are additional

variables3.

Two important points are worth to be highlighted. First,

note that even though the conditions of Theorems 1 and 2

solve the LF and MF filtering problem, this paper does

not prove that the conditions remain necessary when an

additional constraint for asymptotic stability is imposed. Sec-

ond, complex matrices are obtained for the filter realization

(which is non implementable).

The following propositions summarize the results pre-

sented in this paper, yielding sufficient conditions that pro-

vide asymptotically stable filter realizations with real param-

eters for the LF and MF filtering problems.

Proposition 1: An asymptotically stable and real filter

that assures ‖H( jω)‖∞ < γ,∀ω ∈ [0,ωℓ] can be obtained by

solving either

min.
Q11,Q12,Q22,P11,P12,P22,M11,

M21,K̂,MA f ,MB f ,C f ,D f

γ2

s. t. (9), K̂ + K̂∗ ≻ 0

(14)

or
min.

F11,F21,K̂,MA f ,MB f ,C f ,D f

γ2

s. t. (10), K̂ ≻ 0

(15)

with ω̃1 = −ωℓ and ω̃2 = ωℓ, where K̂,MA f ∈ R
n×n and

MB f ∈ Rn×q.

Proposition 2: An asymptotically stable and real filter

that assures ‖H( jω)‖∞ < γ,∀ω ∈ [ω1,ω2] can be obtained

by solving either

min.
Q11,Q12,Q22,P11,P12,P22,M11,

M21,K̂,MA f ,MB f ,C f ,D f

γ2

s. t. (11), (13)

(16)

or (15) with ω̃1 = ω1 and ω̃2 = ω2, where K̂,MA f ∈ R
n×n

and MB f ∈ Rn×q.

As a final contribution of the paper, a numerical com-

parison between Propositions 1 and 2, which are based

on different extensions for the KYP Lemma, is presented,

including the treatment of uncertain systems in the polytopic

form. The condition proposed in [7] is also investigated.

V. NUMERICAL EXAMPLES

The routines were implemented in MATLAB , version

8.2.0.701 64 bits, using YALMIP [14] and Mosek [15]. The

programming of the conditions of Propositions 1 and 2 is

performed directly in YALMIP. However, the extension of

3A search of the scalar ξ in the view of paper [8] could be employed
to alleviate the conservatism when uncertain systems are investigated.
Throughout this paper, the scalar ξ is fixed equal to 1.

these propositions to treat polytopic systems (discussed in

Example 2) requires some explanations. First some decision

variables are made polynomially parameter-dependent of

fixed degree on the uncertain parameters and the LMIs, that

are sufficient to check the positivity (or negativity) of the

resulting polynomial inequalities, are obtained by means of

Pólya’s relaxations following the lines of [16]. Note that

these trick tasks can be performed automatically using the

package ROLMIP (Robust LMI Parser) [17].

Example 1. The purpose of this example is to compare

the results of Propositions 1 and 2, and also [7], in terms of

the accuracy of the H∞ bounds and numerical complexity,

which is inferred through the number of scalar variables V

and LMI rows L. To set up this numerical experiment, 15

randomly generated systems given as in (1) with dimensions

n = 3,5 and 8 (5 for each value of n) and r = 2, p = 2,

and q = 1 are produced using the function randn of the

MATLAB.
For each of these systems, if the generated matrix A is

not Hurwitz, then the eigenvalues are displaced to the left

by 1.1η , where η is the maximum value of the real part of

the eigenvalues of A. The results obtained when the seed

of the randn is 18 and ωℓ = 20 in Proposition 1, and

ω1 = 10 and ω2 = 100 in Proposition 2 are the same, that

is, approximately the same H∞ bound was produced (within

four decimal digits) for all the 15 systems considered. The

LF and MF conditions presented in [7] were assessed as well,

yielding similar results in terms of the H∞ bound.
Figure 1 illustrates how the number of LMI rows (solid

curves, left axis) and scalar variables (dashed lines, right

axis) grows with the increase in the dimension of the system

for the methods (14) (blue), (15) (green) and the continuous-

time LF condition in [7] (red). Observe that, based on the

results presented, the method (15) requires both less scalar

variables and LMI rows. The behavior for MF is similar.

Example 2. Consider the robust asymptotically stable LTI

system, treated in [18]

ẋ(t) =

[
0 −1+ 0.3α
1 −0.5

]

x(t)+

[
−2 0

1 0

]

w(t)

z(t) =
[
1 0

]
x(t)

y(t) =
[
−100+ 10β 100

]
x(t)+

[
0 1

]
w(t)

(17)

where |α| ≤ 3 and |β | ≤ 1. A polytopic model with four

vertices can be obtained from this model. The conditions

of Proposition 1 and 2 were programmed using ROLMIP

by fixing all the optimization variables as polynomials of

degree one except K̂,MA f ,MB f ,C f and D f that were fixed

as constant (degree zero).
As an example, for ωℓ = 20, Proposition 1 (adapted to

cope with polytopic models) provided 7.2293 and 7.2295
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Fig. 1. Number of LMI rows – L, left axis, solid curves – and number
of variables – V , right axis, dashed curves – for the two methods of
Proposition 1 (blue - (14); green - (15)) and the LF condition of [7] (red)
as a function of the number n of states of the system.

using (14) and (15), respectively, while the LF condition

in [7] yields 7.6446. To investigate the behavior of the

proposed conditions for the middle-frequency intervals and

to compare them with the MF condition in [7], the value

ω1 is fixed as 0.3 and ω2 varies from 0.35 to 30. These

results are presented in Figure 2. Note that, for this example,

Proposition 2 with (16) (blue) provided slightly lower bounds

for small values of ω2 when compared with method (15)

(green), yielding similar results as ω2 increases. The MF

condition in [7] provided results that are comparable with

Proposition 2, but using considerably more variables and

LMI rows.

10
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Fig. 2. H∞ bounds provided by the robust filter applied to system (17)
(Example 2) for the interval [ω1 = 0.3,ω2 ] as a function of ω2 using the two
methods of Proposition 2 (green - (15); blue - (16)) and the MF condition
from [7] (red).

VI. CONCLUSION

Synthesis conditions for the LF and MF filtering problems

were proposed using two extensions of the KYP Lemma.

Numerical examples were presented to evaluate the proposed

conditions and to compare them with another condition of

the literature in terms of the H∞ bound and numerical

complexity. From the numerical experiments, it seems that

the two design conditions are equivalent (i.e., provide the

same bounds to the H∞ norm) but one has lower complexity

(less LMI rows and variables) in the precisely known case.

In the uncertain case, slightly smaller bounds have been

obtained with the more complex proposition from this paper

(even when compared to other conditions from the literature).

The theoretical relationship between the two propositions in

the general case remains a topic of future investigation.
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[14] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in Proc. 2004 IEEE Int. Symp. on Comput. Aided Control
Syst. Des., Taipei, Taiwan, September 2004, pp. 284–289.

[15] MOSEK ApS, The MOSEK optimization software, 2015,
http://www.mosek.com.

[16] R. C. L. F. Oliveira and P. L. D. Peres, “Parameter-dependent LMIs
in robust analysis: Characterization of homogeneous polynomially
parameter-dependent solutions via LMI relaxations,” IEEE Trans.
Autom. Control, vol. 52, no. 7, pp. 1334–1340, July 2007.

[17] C. M. Agulhari, R. C. L. F. Oliveira, and P. L. D. Peres, “Robust
LMI parser: A computational package to construct LMI conditions
for uncertain systems,” in XIX CBA, Campina Grande, PB, Brazil,
September 2012, pp. 2298–2305.

[18] M. J. Lacerda, R. C. L. F. Oliveira, and P. L. D. Peres, “Robust H2 and
H∞ filter design for uncertain linear systems via LMIs and polynomial
matrices,” Signal Process., vol. 91, no. 5, pp. 1115–1122, May 2011.

4292

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on October 13,2020 at 20:41:31 UTC from IEEE Xplore.  Restrictions apply. 


