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Abstract
Mathematical optimisation plays a crucial role in providing efficient solutions to
modern engineering applications. Despite enormous advances in the past decades,
some of these applications involve solving optimisation problems that may not be
computationally tractable or that call for new theoretical advancements. Hence,
obtaining robust and scalable methods and developing new analytic tools to
optimisation problems is of paramount importance. This thesis addresses some
of the main challenges when solving optimisation programs, namely, scalability,
the presence of integer decision variables and the presence of uncertainty.

Scalability throughout this thesis is achieved by means of distributed compu-
tation. Technological advancements that lead to the increase of computational
devices per capita have attracted research on the development of algorithms that
can exploit such a distributed and unstructured computational power to solve
large-scale optimisation problems. In this context, multi-agent optimisation has
emerged, as it enables distributed computation by allowing devices (or agents) to
communicate over a network. This thesis proposes an algorithmic scheme based
on subgradient averaging to perform multi-agent optimisation.

Some optimisation problems are computationally intractable due to the
presence of integer variables. Optimising over integers is, in general, hard due
to the lack of polynomial-time algorithms to obtain an optimal solution. In
fact, some well-known NP-hard problems can be cast as optimisation programs
involving integer decision variables. In this thesis we investigate the so-called
actuator placement problem and show that a particular instance of this problem,
despite being an integer program can be solved exactly by means of a convex
relaxation. We also link such a relaxation to the multi-agent optimisation
framework explored previously, showing how distributed schemes can be leveraged
to obtain the optimal solution.

Other challenging optimisation problems arise with the presence of uncertain
constraints. Indeed, even the well-studied class of linear optimisation prob-
lems may require theoretical and algorithmic advancements under this type
of constraints. Uncertain constraints represent our lack of knowledge about
the underlying phenomena and appear in several applications, including the
optimal power flow problem under renewable energy generation, robotics, and
transportation applications. Motivated by this fact, the last part of this thesis
focuses on a randomised approximation to chance-constrained optimisation
problems. We show a new theoretical bound on the probability of constraint
violation that can improve the conservatism with respect to the state-of-the-art.
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Abstract

Mathematical optimisation plays a crucial role in providing efficient solutions
to modern engineering applications. Despite enormous advances in the past
decades, some of these applications involve solving optimisation problems that
may not be computationally tractable or that call for new theoretical advancements.
Hence, obtaining robust and scalable methods and developing new analytic tools to
optimisation problems is of paramount importance. This thesis addresses some of
the main challenges when solving optimisation programs, namely, scalability, the
presence of integer decision variables and the presence of uncertainty.

Scalability throughout this thesis is achieved by means of distributed compu-
tation. Technological advancements that lead to the increase of computational
devices per capita have attracted research on the development of algorithms that
can exploit such a distributed and unstructured computational power to solve
large-scale optimisation problems. In this context, multi-agent optimisation has
emerged, as it enables distributed computation by allowing devices (or agents) to
communicate over a network. This thesis proposes an algorithmic scheme based
on subgradient averaging to perform multi-agent optimisation.

Some optimisation problems are computationally intractable due to the presence
of integer variables. Optimising over integers is, in general, hard due to the lack
of polynomial-time algorithms to obtain an optimal solution. In fact, some well-
known NP-hard problems can be cast as optimisation programs involving integer
decision variables. In this thesis we investigate the so-called actuator placement
problem and show that a particular instance of this problem, despite being an
integer program can be solved exactly by means of a convex relaxation. We also link
such a relaxation to the multi-agent optimisation framework explored previously,
showing how distributed schemes can be leveraged to obtain the optimal solution.

Other challenging optimisation problems arise with the presence of uncertain
constraints. Indeed, even the well-studied class of linear optimisation problems may
require theoretical and algorithmic advancements under this type of constraints. Un-
certain constraints represent our lack of knowledge about the underlying phenomena
and appear in several applications, including the optimal power flow problem under
renewable energy generation, robotics, and transportation applications. Motivated
by this fact, the last part of this thesis focuses on a randomised approximation



to chance-constrained optimisation problems. We show a new theoretical bound
on the probability of constraint violation that can improve the conservatism with
respect to the state-of-the-art.
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1
Introduction

1.1 Motivation

Modern engineering methods require solving optimisation problems (obtained,

for instance, by means of optimal control theory) that strike a balance between

performance and robustness against disturbances and unmodelled dynamics. These

problems offer flexibility to the designer, as they allow to tailor the objective

function to meet performance specifications and the constraints to guarantee a

robust and safe solution. In fact, this strategy has led to several developments

in many different areas of engineering and related fields, including control theory

[20], [107], [126], [132], power systems [36], [71], [77], [148], statistics [1], [47], [52],

[88], and finance [37], [43], [80], [115]. However, while we have experienced several

advances in past decades, especially the development of polynomial-time algorithms

[3], [106], [144] to solve the broad and important class of convex optimisation

problems, there is a plethora of large-scale engineering applications that cannot

be addressed under the current technology. Hence, it is of paramount importance

to study limitations of current optimisation schemes.

As an example, consider the design of controllers using the H2 and H∞ norms

for linear time-invariant (LTI) systems. Well-known formulations of these problems

require the solution of semi-definite programs (SDPs) [8], [20], [59], [97], [108], [132]

1



2 1.1. Motivation

and extensions to cope with uncertain LTI models whose matrices belong to a

polytope of known vertices are available [69], [107], [126]. However, H2 and H∞
control problems problems may become difficult to solve if the dimension of the

state-space model is too large, or if the uncertainty affecting the system has a more

complicated description. Thus we need more tools and ideas to perform a robust

and safe design using mathematical optimisation. Motivated by this discussion, this

thesis focuses on overcoming the intractability of optimisation-based methods from

three different perspectives: scalability, the presence of integer decision variables

and the presence of uncertain constraints.

Scalability within an optimisation problem admits several interpretations. The

complexity of optimisation algorithms is usually characterised by means of the

required computation and storage to run the algorithm in terms of the input size.

For instance, this complexity for standard interior-point algorithms is known to be

polynomial in n, where n is the number of optimisation variables [106]. As a rough

approximation, it increases more than 103 times when the number of variables is

increased tenfold. Hence, interior point methods cannot be applied to large-scale

optimisation problems. Recent progress towards scalability has been made by

exploring the structure of SDPs [58], [96], [143], [154] using chordal sparsity, which

can then reduce the computation to be polynomial in r, where r is the size of the

maximum clique associated with the sparsity pattern of the problem data. This

can lead to a significant speed-up if r is much less than n.

In this thesis, we approach scalability from a different perspective. Our goal is to

address large-scale problems by leveraging distributed computation [11], [92], [101],

[103], [123]. Under this setting, the optimisation problem is solved using a collection

of processors, also reffered to as agents, that holds private information (e.g., part

of the objective function and local constraint sets) and that is not willing to share

such an information with a single processing unit. We allow agents to comminucate

with their neighbours by means of a network and to update their local estimates

of the optimal solution based on the received information. The main challenge

involves proving that all generated estimates converge to the optimal solution of
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the underlying (global) optimisation problem. Scalability here is then related to

the rate of convergence of these iterates and to the influence of the connectivity

of the communication network in such convergence.

Intractability can also arise in the presence of integer variables. Indeed, many

NP-hard problems [18], [41], [72] possess an equivalent formulation involving an

optimisation over integer variables, e.g., the actuator placement problem. Steering

the states of large-scale systems can be prohibitively expensive if one places an

actuator at each state of the network; hence, it is usually necessary to limit

the number of actuators to a subset of these states. To this end, given a fixed

number of actuators, the goal of the actuator placement problem is to select the

optimal – according to some metric – position of these actuators. Depending on

the metric employed, we obtain different formulations of the problem. Paper [114]

studied, for instance, how to place actuators and sensors so that the resulting

system is structurally controllable and observable (see [83], [134]), while [109]

establishes NP-hardeness of finding a smallest set of actuators that make the

resulting system controllable. This negative statement, however, does not preclude

particular instances to be tractable, and more research is needed to identify and

propose efficient algorithmic schemes for such instances. Approximation algorithms

for this class of problems have been recently addressed in [40], [63], [110].

The third challenge is the presence of uncertain constraints. Even for the well-

studied class of linear programs, which is under development since at least the 50s

[70], [151], providing guarantees to the optimal solution is elusive under the presence

of uncertainty – progress has recently been made under restrictive scenarios [6],

[7], [14], [15], but no general solution is known. Throughout this thesis, we treat

uncertainty in the constraints by means of a chance-constrained formulation to

optimisation problems. Such formulation allows some level of constraint violation,

thus distinguishing from the robust paradigm, which requires the optimal solution to

satisfy the constraints for all realizations of the uncertain parameters. Unfortunately,

the chance-constrained formulation is only tractable for some specific probability
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distributions [105], [118] and its general formulation may lead to non-convex

problems, even when all the functions defining the constraints are convex.

A well-known approximation to chance-constrained optimisation problems is the

scenario approach theory [29], [31], [32], [87], which relies on a set of independent

and identically distributed samples either from a data set or from a probabilistic

model of the uncertainty. The main idea of the scenario approach theory is to

construct an auxiliary convex problem, called a scenario program, and study the

feasibility guarantees associated to its optimal solution, showing that a feasible

solution to the original chance-constrained problem can be produced with high-

probability. The scenario approach theory does not impose any assumption on

the underlying distribution if the uncertainty’s distribution is fixed but unknown.

However, as a price for such a general result, the associated optimal objective value

can be conservative. To this end, the theory has been extended in [22], [30] to

trade feasibility to performance by allowing a certain fraction of the scenarios to be

discarded. As opposed to the main result in [29] that is tight for a certain class

of scenario programs, the result of [30] is not known to be tight. In this thesis we

provide a tight characterization for the probability of constraint satisfaction for

such problems, thus improving upon the existing results in [22], [30].

The aforementioned limitations of optimisation-based techniques complicate

their use to large scale engineering applications. This thesis provides a step towards

overcoming these limitations by dealing with each of them seperately and offering

new theoretical results.

1.2 Thesis outline and contributions

The main contributions of this thesis are new theoretical and algorithmic results

related to the limiting factors described in Section 1.1. Below we provide a detailed

description of each chapter, highlighting its main contributions.

• In Chapter 2, we introduce some mathematical background used throughout

the thesis. We start with some basic topological concepts important to some
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technical results of Chapter 3 and to the understanding of the measure-

theoretic framework used in Chapters 5 and 6. These concepts include the

abstract notion of a topological space, and the definition of interior and

closure of subsets of a topological space. We then introduce the main concepts

related to measure theory that will be employed in subsequent chapters, which

include the definition of σ-algebra and probability measure spaces. Convex

functions and convex optimisation play a crucial role in this thesis, and these

are also introduced in this chapter. We show existence of a subgradient for

convex functions in the interior of their domain, an important property that

is explored in Chapter 3. We also review duality theory, as this will be used

in Chapter 4. Finally, we also prove a fundamental result on compression

learning that are used in Chapters 5 and 6.

• In Chapter 3, we study multi-agent optimisation as a way to achieve scalability.

Our setup considers a separable objective function and assumes that agents

communicate over a network to solve an underlying optimisation problem.

We propose a new distributed scheme based on subgradient averaging that

consists of a state-averaging step, where the current local estimate is shared

with neighbouring agents, a subgradient-averaging step, where a subgradient

of the local function evaluated at the average computed in the previous step is

used to compose a proxy for the subgradient of the global function, and a local

update, in which the current averaged estimate is projected onto the local

sets. The distinctive feature of our proposed scheme with respect to other

similar algorithms in the literature is that its analysis holds simultaneously

for time-varying networks, different constraint sets per agent, and subgradient

averaging, features that have so far been considered separately in the literature.

We also establish the rate at which the generated sequences converge to the

optimal set of the global problem. This rate recovers standard results for the

centralised problem under similar assumptions. This chapter is based on the

papers
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– “Convergence rate analysis of a subgradient averaging algorithm for

distributed optimisation with different constraint sets”, L. Romao, K.

Margellos, G. Notarstefano, and A. Papachristodoulou. Proceedings of

the 58th Conference on Decision and Control, pp. 7448–7453, 2019.

– “Subgradient averaging for multi-agent optimisation with different con-

straint sets”, L. Romao, K. Margellos, G. Notarstefano, and A. Pa-

pachristodoulou. vol. 131. Automatica. 2021

• In Chapter 4, we investigate an optimisation problem involving integer

variables derived from a formulation of the actuator placement problem.

Given a network and a set of actuators, our task is to place these actuators in

order to maximise the trace of the controllability Gramian. Using properties

of integral polyhedra, we show through a sequence of reformulations that

the optimal solution of this problem can be determined by means of a linear

program without introducing any relaxation gap. This allows us to obtain the

optimal solution using a primal-dual distributed algorithm, thus providing a

scalable approach to the actuator placement. We illustrate the main features

of our approach by means of a case study involving a simplified model of the

European power grid. This chapter is based on

– “Distributed Actuator Selection: Achieving Optimality via a Primal-

Dual Algorithm”, L. Romao, K. Margellos, and A. Papachristodoulou.

Accepted for publication in the IEEE Control Systems Letters, vol. 2,

no. 4, pp. 779–784, 2018.

• In Chapter 5, we study optimisation problems with uncertain constraints

under the lens of the scenario approach theory. We are interested in trading

feasibility to performance, hence focus on scenario programs with discarded

constraints. We revisit the so-called sampling and discarding approach that

provides feasibility guarantees for the scenario solution when the decision

maker is allowed to discard some of the original scenarios. We analyse a
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scheme that consists of a cascade of optimization problems, where at each step

we remove a superset of the active constraints. We leverage results from the

compression learning literature to produce a tighter bound for the probability

of constraint violation of the obtained solution compared to the existing

state-of-the-art when scenarios are removed in multiples of the dimension of

the optimisation problem. We also show that the proposed bound is tight by

describing a class of scenario problems that achieves the given upper bound.

The proposed methodology is compared to a discarding scheme based on a

greedy removal strategy. This chapter is based on

– “On the exact feasibility of convex scenario programs with discarded

constraints”, L. Romao, K. Margellos, and A. Papachristodoulou. 2021.

Submitted to IEEE Transactions on Automatic Control.

– “Tight generalization guarantees for the sampling and discarding ap-

proach to scenario optimization”, L. Romao, K. Margellos, and A.

Papachristodoulou. Proceedings of the 59th IEEE Conference on Decision

and Control, pp. 2228—2233, 2020.

• In Chapter 6, we extend the analysis of Chapter 5 to the case of an arbitrary

number of removed scenarios. There are two main messages with the results in

this chapter. The first one states that the feasibility guarantees one can offer

to the resulting solution are better than the standard sampling-and-discarding

bound applied to an arbitrary number of discarded scenarios. The second,

and perhaps surprising, one highlights that, unless we impose a restrictive

assumption on the class of scenario programs, the obtained bound for an

arbitrary number of removed samples is slightly more conservative. This is

due to the fact that scenarios in the support set of the intermediate stages

can be disjoint. We also provide a result valid for min-max scenario programs,

where at the last stage we improve the cost by moving in the direction of the

epigraphic variable. This chapter is based on
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– “Tight sampling and discarding bounds for scenario programs with an

arbitrary number of removed samples’ ’, L. Romao, K. Margellos, and A.

Papachristodoulou, 2021. To appear in the proceedings of the 3rd Annual

Learning for Dynamics and Control Conference. Zurich, Switzerland.

– “Scenario programs with discarded scenarios: feasibility bounds for an

arbitrary number of removed scenarios,”L. Romao, K. Margellos, and A.

Papachristodoulou, 2021. Submitted to Automatica.

• Chapter 7 summarises the thesis’ contributions and discusses directions for

future work.



2
Mathematical preliminaries

In this chapter, we briefly introduce the main mathematical concepts that will be

used in the thesis. This chapter aims to keep this manuscript self-contained and

is structured as follows. In Sections 2.1 and 2.2, we review some topological and

measure-theoretic concepts that form the foundation to well-known concepts in

convex analysis and probability. In Section 2.3, we give a brief introduction to

convex functions and convex optimisation problems. In Section 2.4, we review some

learning-theoretic results that constitute the foundation of Chapters 5 and 6. In

Section 2.5, a list of further reading on the material presented in this chapter is

given. Finally, in Section 2.6 we provide a diagram that illustrates how the sections

in this chapter relate to the main results of this thesis.

2.1 Basic topology

2.1.1 Topological spaces

We start with a brief introduction to some topological concepts that are used

throughout this thesis. This treatment is by no means complete and is aimed at

introducing the reader to the minimal knowledge necessary to understand some

measure-theoretic concepts presented later. In doing so, we also aim to enhance

our understanding on some concepts that are topological in nature, such as closure,

9
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interior, convex hulls, continuity, among others. To this end, we start with a

definition of topological spaces.

Definition 1. Let X be a non-empty set. We say that a collection of subsets of X,

denoted by T , is a topology for X if the following conditions hold:

i) X, ∅ ∈ T ;

ii) For all U, V ∈ T , we have that U ∩ V ∈ T ;

iii) Let I be an arbitrary index set. Then if Xi ∈ T for all i ∈ I, we have that

∪i∈IXi ∈ T .

The pair (X, T ) is called a topological space.

The subsets U ∈ T are called open sets. Note that T is closed under finite

intersection and arbitrary union. There is no particular reason for defining which

subsets of X are open; in fact, to construct a topological space we only need to

construct a collection of subsets satisfying Definition 1.

Once we have a topological space (X, T ), we can define the collection of closed

subsets of X. If1 B ⊂ X and its complement is an element of T , then B is called

a closed subset. It is a fact that the collection of closed subsets is closed under

finite union and arbitrary intersection.

Throughout this thesis, we are interested in topological spaces whose open

sets (i.e., its topology) are induced by a norm. To this end, let us introduce

the notion of normed spaces.

Definition 2. A pair (X, ‖ · ‖) is called a normed space if X is a vector space and

the function ‖ · ‖ : X → R satisfies

i) For all x ∈ X, ‖x‖ = 0 implies that x = 0.

ii) For all α ∈ R and for all x ∈ X, we have ‖αx‖ = |α|‖x‖.
1Let A and B be subsets of a set X. Throughout this thesis we will be using the notation

A ⊂ B whenever A is contained in B, i.e., whenever every element of A is an element of B. In the
literature, it is common to use A ⊆ B for the above meaning, and reserve the notation A ⊂ B for
strict inclusion. With our notation, strict inclusion can be represented as A ⊂ B and B 6⊂ A.
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iii) For all x, y ∈ X, we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

In other words, normed vector spaces possess a induced distance function

given by d(x, y) = ‖x − y‖, as a consequence of Definition 2. Given a normed

space (X, ‖ · ‖), we can construct a topology to X by means of the open balls

B(x, r) = {y ∈ X : d(x, y) < r}, where x ∈ X and r > 0. Throughout this

thesis, we think of Rn as a topological space with topology induced by the standard

Euclidean distance ‖x‖2 =
√∑n

i=1 x
2
i .

We now define the notions of continuity and compactness in topological spaces

that will be employed in all subsequent chapters of this thesis.

Definition 3. Let (X, T ) be a topological space. A subset K ⊂ X is said to be

compact if for all collection of open sets (Ui)i∈I ⊂ T such that K ⊂ ∪i∈IUi, there

exist a finite set of indices {1, . . . , `} ⊂ I such that K ⊂ ∪`i=1Ui.

The collection of subsets (Ui)i∈I is called an open cover of K. Using this

terminology, Definition 3 states that K is compact if for all open cover there is

a finite subcover. A theorem due to Heine-Borel [128, Theorem 2.41] states that

K ⊂ Rn (i.e., if we consider X = Rn and T being the topology induced by the

Euclidean metric) is compact if and only if K is closed and bounded.

Definition 4. Let (X, TX) and (Y, TY ) be two topological spaces. Then a function

f : X → Y is continuous if for all open sets U of TY we have that f−1(U) is open

in X, i.e., for all U ∈ TY we have that

f−1(U) = {x ∈ X : f(x) ∈ U} ∈ TX .

Definition 4 gives a notion of continuity between arbitrary topological spaces that

is independent of any metric. It is possible to check that this notion coincides with

the usual ε-δ argument when restricted to normed spaces [99, Chapter 2, Exercise

1]. There is an interesting connection between continuity and compactness, as

presented in the sequel.
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Proposition 1 ([99], Chapter 5, Theorem 5.5). Let f : X → Y be a continuous

function and K ⊂ X be a compact set. Then the set f(K) = {y ∈ Y : y =

f(x), for x ∈ K} is compact.

Proof. To show that f(K) is compact we use Definition 3. Let (Ui)i∈I be an open

cover of f(K), our goal is to show that there is a finite subcover. Since f(K) ⊂ ∪i∈IUi
and f is continuous, we have that K ⊂ ∪i∈If−1(Ui), i.e., (f−1(Ui))i∈I is an open

cover for K. Then, by compactness of K, there exists a finite subcover, i.e., there

exist indices {1, . . . , `} ⊂ I such that K ⊂ ∪`i=1f
−1(Ui). However, this implies that

f(K) ⊂ ∪`i=1Ui, thus showing that f(K) is compact. This concludes the proof of

Proposition 1.

2.1.2 Interior, relative interior, closure, convex sets, convex
hull, and affine hull of a subset

Let (X, T ) be a topological space (e.g., Rn with the topology induced by the

Euclidean metric) and B ⊂ X be given. Two subsets constructed from B are of

interest. The first one is the interior of B, formally defined next.

Definition 5. Let B ⊂ X and define the collection of subsets

B = {A ⊂ X : A ∈ T , A ⊂ B} .

The interior of B, denoted by int(B), is given by int(B) = ∪A∈BA.

By definition of a topology (more specifically, item iii) in Definition 1), we have

that int(B) is an open set. Besides, it is also the largest open set contained in B,

as any open set contained in B is in the collection B in Definition 5. The other

important subset constructed from B is called the closure of B.

Definition 6. Let B ⊂ X and define the collection of subsets

B = {A ⊂ X : Ac ∈ T , B ⊂ A},

where Ac is the complement of A in X, i.e., Ac = X \A. The closure of B, denoted

by cl(B), is given by cl(B) = ∩A∈BA.
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Similar as before, we can observe that cl(B) is the smallest closed set containing

B. Besides, by Definitions 5 and 6, we have that B = int(B) if B is open, and

B = cl(B) if B is closed. In general, we have that int(B) ⊂ B ⊂ cl(B).

Let (X, T ) be a vector space 2 and Y ⊂ X be a subspace of X. The subpace

Y can be equiped with a topology induced by the topology of the ambient space

X. To this end, we define

TY := {A ∩ Y : A ∈ T }, (2.1)

and let the open sets of Y be the elements of TY . It is trivial to check that (Y, TY )

satisfies the properties of Definition 1, so it is a well-defined topological space. Note

that the elements of TY are obtained by taking the intersection of an open set of

X with Y . The topology TY in (2.1) is called the subspace topology (please refer

to [99] for more details). Given any subset B ⊂ X (not necessarily a subspace),

there is a natural way to produce a subspace of X.

Definition 7. Let B ⊂ X, where X is a vector space, and consider the collection

of subspaces

B = {Y : Y is a subspace of X,B ⊂ Y }.

The affine hull of B, denoted by aff(B), is given by ∩Y ∈BY .

In other words, the affine hull of a subset B ⊂ X is the smallest subspace that

contains B. This construction leads naturally to the definition of the relative

interior of a subset.

Definition 8. Let B ⊂ X. The relative interior of B, denoted by ri(B), is defined

as the interior of B with respect to the subspace topology of aff(B), i.e.,

ri(B) = ∩B∈BB,
2A vector space consists of a set X and a field F, which is usually either R or C, for which

addition between elements of X and multiplication between an element of F and an element of X
are well-defined and well-behaved (i.e., they are associative, distributive, etc). When these two
operations are continuous with respect to the topology of X, a beautiful mathematical structure
called topological vector spaces emerges (see [129] for more details). In this chapter, whenever we
refer to a topological space (X, T ) being a vector space, we are implicity invoking this structure
of topological vector spaces. A typical example of a topological vector spaces is, for instance, Rn

equiped with the topology induced by the Euclidean distance.
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where B = {A ⊂ X : A ∈ Taff(B), A ⊂ B}.

To construct the relative interior of B we proceed intuitively as follows: (1) we

compute the affine hull of B as in Definition 7; (2) we then equip Taff(B) with the

subspace topology as in (2.1); (3) we compute the interior of B with respect to Taff(B).

A natural question one may ask is how the interior and relative interior of a

set B are related. First, since int(B) is the largest open set (with respect to the

topology of X) contained in B, we have that int(B) = int(B) ∩ aff(B) ∈ Taff(B),

where the equality holds due to the fact that int(B) is contained in B and the

fact that int(B) ∩ aff(B) ∈ Taff(B) by the definition of the subspace topology. We

can then conclude that int(B) ⊂ ri(B). Moreover, the previous inclusion can be

strict. To check this, consider R2 with the topology given by the Euclidean norm

and let B be any line segment. As the affine hull of B has dimension one, the

interior of B is empty; however, its relative interior is non-empty as there exists

an open set of R2 that has non-empty intersection with B. Let us now focus our

attention to a special collection of subsets of X.

Definition 9. Let X be a vector space. We say that a set C ⊂ X is convex if for

all x, y ∈ C and θ ∈ (0, 1) we have that θx+ (1− θ)y ∈ C.

The collection of all convex sets of a vector space is closed under arbitrary

intersection, i.e., ∩i∈IXi is convex whenever all the sets Xi, i ∈ I, are convex.

However, the union of two convex sets is not necessarily convex, e.g., consider

two disjoint intervals in the real line and take their union. There is a convex set

associated to any subset of a vector space.

Definition 10. Let C ⊂ X, where X is a vector space, and consider the collection

of subsets

C = {A ⊂ X : C ⊂ A,A is convex}.

Then conv(C) = ∩A∈CA is the convex hull of the set C.
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One can check that conv(C) is the smallest convex set containing C. In fact,

since the collection of convex sets is closed under intersection we have that conv(C)

is convex and if A is convex and C ⊂ A, then we have by definition that such

an A is in C, so we may conclude that conv(C) ⊂ A. Definition 10, however, is

abstract and may not be useful for computations; hence, the following proposition

provides an equivalent definition of the convex hull of a set.

Proposition 2 ([122], Section 1). Let C ⊂ X, where X is a vector space. We have

that

conv(C) =
{∑̀
i=1

θixi :
∑̀
i=1

θi = 1, θi ≥ 0, xi ∈ C for all i = 1, . . . , `, and ` ∈ N
}
.

An alternative proof of Proposition 2 can be found in [138]. It states that the

convex hull of a set can be found by forming all finite convex combinations of

elements of C. This is a general result and holds true even if the underlying space

is infinite-dimensional. However, if X is finite-dimensional (e.g., X = Rn), then

we can refine the above theorem by restricting ` ≤ n+ 1 and this consists of the

well-known Caratheodory’s theorem [122, Section 17].

2.2 Measure theory

The last two chapters of this thesis deal with uncertain optimisation problems, so

in this section we aim to provide a brief review on some measure-theoretic concepts

that will be essential in those chapters. The concepts introduced in Section 2.1

play an important role in this section.

Definition 11. Let ∆ be a non-empty set and F be a collection of subsets of ∆

satisfying

i) ∆ ∈ F .

ii) For all F ∈ F , we have that F c also belongs to F .
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iii) For all Fi ∈ F , i ∈ N, we have that ∪i∈NFi ∈ F .

The collection of subsets F is called σ-algebra and the pair (∆,F) is called a

measurable space.

It follows that the σ-algebra is closed under complement and countable union

and intersection (the latter is due to items ii) and iii) in the above definition).

The elements of the σ-algebra F can be thought as the collection of possible

events in a probabilistic context. One can also show that the intersection of

an arbitrary collection of σ-algebras is also a σ-algebra and, being so, given a

collection of subsets of ∆ the smallest σ-algebra containing such a collection is

well-defined. For instance, let T be a collection of subsets of ∆. We can define

the smallest σ-algebra containing T as

σ(T ) =
⋂
{F : T ⊂ F ,F is a σ-algebra}.

Common measurable spaces arise from topological ones. Indeed, let (X, T ) be a

topological space and consider the σ-algebra generated by the collection of open sets

T (in this case ∆ = X). The resulting σ-algebra (i.e., F = σ(T )) is called the Borel

σ-algebra. When the topology of X is clear from the context we may denote its Borel

σ-algebra by B(X). For instance, the Borel σ-algebra of R, denoted by B(R), is the

σ-algebra generated by the topology3 associated to the standard metric in R. More

generally, the Borel σ-algebra in Rn is the σ-algebra generated by the rectangles, i.e.,

B(Rn) = σ

({
n∏
i=1

(ai, bi) : ai < bi for all i = 1, . . . , n
})

.

In this thesis we only consider R and Rn equipped with their corresponding Borel

σ-algebras. The above construction to define a σ-algebra in Rn from the rectangles

sets in R can be extended to abstract measurable spaces and its formalisation

is due to the monotone class theorem [150, Chapter 3]. Indeed, let (∆i,Fi),

i = 1, . . . , n, be measurable spaces then we can define the product measurable space

(∏n
i=1 ∆i, σ(∏n

i=1Fi)) by means of a similar procedure.
3This topology can be constructed by means of the open intervals (a, b), with a < b, by taking

all possible finite intersections of such sets and then taking an arbitrary union. This process is
useful to construct topologies from simpler sets (see [99], for more details).
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Definition 12. Let (∆,F) and (Ω,G) be measurable spaces. A function f : ∆→ Ω

is said to be measurable if, for all G ∈ G, we have that f−1(G) ∈ F , that is, f−1

maps elements in G to elements in F .

Note that the definition of measurable functions resembles that of continuous

functions given in Definition 4; in fact, these concepts are related. Let f : Rn → Rm,

with Rn and Rm both equipped with their Borel σ-algebras, then every continuous

function is measurable but the converse does not hold, as measurable functions

can be discontinuous (e.g., step functions are measurable but not continuous. We

refer the reader to [130] for more details).

2.2.1 Probability measure spaces

At the core of probability theory is the concept of a probability measure, which is

a set function that assigns a number in the interval [0, 1] to subsets of the space

∆. Such a function must be countably additive, that is, the value it assigns to two

disjoint sets must be the sum of the values it assigns to each individual set, and this

property must hold also for any countable union of disjoint sets. It is impossible4

to define a probability measure with these properties for all subsets of the real line;

however, this can be done for σ-algebras and the resulting mathematical structure

leads to the concept of a probability measure space.

Definition 13. Let (∆,F) be a measurable space. A probability measure on (∆,F)

is a set function P : F → [0, 1] satisfying

i) P{∆} = 1.

ii) P is σ-additive, i.e., for all sequences of pairwise disjoint subsets Fi ∈ F ,

i ∈ N, we have that

P {∪i∈NFi} =
∑
i∈N

P {Fi} .

A probability measure space is the triple (∆,F ,P) consisting of a set ∆, a

σ-algebra F , and a probability measure P : F → [0, 1].
4A full discussion of this impossibility involves the axiom of choice. See [127, Chapters 1 and

2] for more details.
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The probability measure space (∆,F ,P) provides the mathematical structure

upon which a theory of probability can be developed. Indeed, a powerful integration

theory, called Lebesgue integration, can be developed5. Standard concepts in

probability can be adapted to this measure theoretic framework. A random

variable is a measurable function from the probability measure space (∆,F ,P)

to the measurable space (Rn,B(Rn)), for continuous random variables, and to

the measurable space (Z, 2Z), for discrete random variables,where the notation

2X represents the power set of X. Suppose X is a continuous random variable6,

then its distribution function is defined as

FX(x) = P{X ≤ x} = P ◦X−1(−∞, x], (2.2)

also known as the pushforward measure of P through the map X. It is a fact that

FX(x) is right-continuous and defines a probability measure on R as mFX
((a, b]) =

F−X (b)−FX(a), where F−X (b) = limx↑b FX(x) is the limit from the left of the function

FX . Note that mFX
({a}) = 0 whenever the distribution FX is continuous at a and

that continuity of FX is guaranteed at points a ∈ R where P ◦X−1(a) = 0.

The expectation of a non-negative random variable is given by

E{X} =
∫

∆
X(δ)dP(δ) =

∫ ∞
0

P[X > t]dt =
∫ ∞

0
xdFX(x). (2.3)

Throughout this thesis, we also invoke the following proposition.

Proposition 3 ([150], Chapter 6). Let (∆,F ,P) be a probability measure space,

X : ∆ → [0,∞) be a non-negative random variable with distribution given by

FX : [0,∞)→ [0, 1], and φ : [0,∞)→ R be a differentiable function. Then, we have

that

E{φ(X)} =
∫

∆
φ(X(δ))dP(δ) =

∫ ∞
0

φ(s)dFX(s)

Proposition 3 connects the abstract definition of integration in the space ∆ to

an integral involving the distribution of the random variable X.
5For the sake of brevity, we will not delve into the details of the definition of Lebesgue

integration theory. A rigorous construction of such a theory can be found in [127], [130], [150].
6Note the abuse of notation. In Section 2.1 we have used X to denote a non-empty set for

which we have defined a topology. We hope this is clear from the context.
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2.3 Optimisation

Optimisation is crucial to modern engineering applications. It involves minimising

(or maximising) a function defined in a vector space – in this thesis, we only consider

functions defined in the Euclidean space – over a subset of its domain. A template

for an optimisation problem is given by 7

minimise
x∈X

f(x)

subject to h(x) ≤ 0, (2.4)

where8 f, h : Rn → R are real-valued functions and X is a subset of Rn contained

in the domain of f and h. Points x in the domain of f such that h(x) ≤ 0 are

called feasible points. The optimal set of (2.4) is composed of points x? such that

f(x?) ≤ f(x) for all x in the feasible set. Note that, by definition, the function f is

constant on the optimal set and we denote by f ? this optimal value.

There are a plethora of iterative algorithms that, starting with a feasible point,

produce a sequence converging to the optimal set associated to (2.4), and these

include gradient-based, dual methods, primal-dual methods, among others [9],

[11], [13], [21]. If functions f and h that compose problem (2.4) are convex (as

defined below) and the set X is convex (please refer to Definition 9) we say that

(2.4) is a convex optimisation problem; otherwise, we call (2.4) a non-convex

optimisation problem.

2.3.1 Convex functions, subgradients

Throughout this thesis we will be dealing with convex optimisation problems. To

define such problems, let us introduce the concept of convex functions.
7Throughout this thesis we assume implicitly that there exists a minimiser for all optimisation

problems we are dealing with. This can be guaranteed, for instance, if the function f in (2.4)
has sublevel sets that are closed (i.e., the set {x ∈ Rn : f(x) ≤ a} is closed for all a ∈ R) and if
lim‖x‖→∞ f(x) =∞. For more details, please refer to [4], Chapters 2 and 3.

8We can also consider optimisation problems in which several inequality constraints are present,
in this case we have h : Rn → Rp, where p represents the number of inequality constraints. This
more general case is omitted for brevity. The reader is referred to [21] for more details.
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Definition 14. A function f : Rn → [−∞,+∞] is said to be convex if the set

epi(f) = {(x, t) ∈ Rn × [−∞,+∞] : f(x) ≤ t}

is a convex set of Rn+1.

The set epi(f) defined above is called the epigraph of f , and Definition 14

shows explicitly the connection between convex functions and convex sets, i.e., a

function is convex if and only if its epigraph is convex. Note that in Definition

14 the function f can take values ∞ and −∞ and, in principle, the undefined

operation ∞−∞ may happen. To this end, it is common to restrict attention

to the effective domain of f , defined as

dom(f) = {x ∈ Rn : f(x) <∞}.

Hence, as long as x ∈ dom(f) we cannot have ∞−∞. Definition 14 entails the

fact that f is convex if and only if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), for all θ ∈ (0, 1), (2.5)

whenever x, y ∈ dom(f), or f(x) > ∞ for all x ∈ Rn. Let C ⊂ X be a convex

set, then its indicator function is defined as

1C(x) =
{

0, if x ∈ C
+∞, otherwise. (2.6)

Note that, under Definition 14, the indicator functions of convex sets are convex.

Convex functions are continuous in the interior of their effective domain. The

key idea to prove this is to show that if x̄ ∈ int(dom(f)), then we can use inequality

(2.5) to show that f is locally Lipschitz, i.e., |f(x) − f(y)| ≤ L‖x − y‖ for all

x, y ∈ B(x̄, ε) for some ε > 0. However, a convex function may not be differentiable

in the interior of its effective domain, e.g., the function f(x) = |x| is convex

but non-smooth at the origin and this can bring some difficulties when relying

on algorithms that require the computation of derivatives. Fortunately, convex

functions possess at each point in the interior of its effective domain a generalised

gradient vector, called the subgradient of f .



2. Mathematical preliminaries 21

Proposition 4 ([10], Proposition 5.4.1). Let f : Rn → (−∞,∞) be a convex

function and x̄ ∈ int(dom(f)). Then, there exists a vector g ∈ Rn such that the

inequality

f(x) ≥ f(x̄) + g>(x− x̄), for all x ∈ int(dom(f)).

holds. The set of all such a g is called the subdifferential of f at x̄ and is denoted

by ∂f(x̄).

Proof. We first prove the result for n = 1. To this end, let x̄ ∈ int(dom(f)) be

fixed and consider a < x̄ < b with a, b ∈ int(dom(f)). Under these choices and by

convexity of f , we obtain that

x̄ = θa+ (1− θ)b, for some θ ∈ (0, 1), and f(x̄) ≤ θf(a) + (1− θ)f(b). (2.7)

Manipulating (2.7), we obtain

f(x̄)− f(a)
x̄− a

≤ f(b)− f(x̄)
b− x̄

≤ f(b)− f(a)
b− a

, for all a < x̄ < b. (2.8)

Let b > x̄ be fixed and use the left-most inequality in (2.8) to obtain

f(b) ≥ f(x̄) + (b− x̄)f(x̄)− f(a)
x̄− a

, for all a < x̄.

The result will be proved for b > x̄ if we show that the limit from the left at x̄ of
f(x̄)−f(a)

x̄−a , i.e., lima↑x̄
f(x̄)−f(a)

x̄−a , converges. Note that since x̄ and b are fixed, we know

that this quantity is upper-bounded by the left-most inequality in (2.8). To show

that the above limit exists it suffices proving the following monotonicity property

f(x̄)− f(a)
x̄− a

≤ f(x̄)− f(a′)
x− a′

, for all a < a′ < x̄. (2.9)

This can be done by (2.8), replacing x̄ by a′ and b by x̄. Then we conclude that

the limit exists. Define g− = lima↑x̄
f(x̄)−f(a)

x̄−a .

We now try to show the result for a < x̄. To this end, we fix a < x̄ and consider

the left-most inequality in (2.8) to obtain

f(a) ≥ f(x̄) + (a− x̄)f(b)− f(x̄)
b− x̄

, for all b > x̄.
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Similarly as before, the left-most inequality in (2.8) – in which x̄ and a are fixed

– implies that the limit limb↓x̄
f(b)−f(x̄)

b−x̄ is bounded from below. And to show that

such a limits exists it suffices to prove

f(b′)− f(x̄)
b′ − x̄

≤ f(b)− f(x̄)
b− x̄

, for all b′ < b.

Proceeding as before, this can be done with by replacing a to x̄ and x̄ to b′ in (2.8).

Let g+ = limb↓x̄
f(b)−f(x̄)

b−x̄ . To prove the result it remains to be shown that g+ = g−.

To this end, we use the both inequalities in (2.8). First, take the limit with respect

to b and note that this yields

f(x̄)− f(a)
x̄− a

≤ g+ ≤ f(x̄)− f(a)
x̄− a

,

now taking the limit with respect to a implies that g− ≤ g+ ≤ g−, thus yielding

g+ = g− = g. This concludes the proof of the proposition for n = 1. The proof for

general n can be obtained from the case n = 1 and is omitted for brevity.

Proposition 4 states that the subdifferential is non-empty in the interior of the

effective domain of a convex function. For instance, let f : R→ [0,∞) be defined as

f(x) =
{
|x|, if x ∈ [−1, 1]

+∞, otherwise.

The interior of the effective domain is (−1, 1) and the subdifferential at each

point is given by

∂f(x) =


−1, if − 1 < x < 1

[−1, 1], if x = 0
1, if 0 < x < 1,

which is non-empty, thus in accordance with Proposition 4. Note that Proposition

5.4.1 in [10] also implies that the resulting subdifferential is compact at each point

in the interior of the domain of f.
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2.3.2 Duality theory

As stated at the beginning of this section, given an optimisation problem, our

main goal is to produce an iterative scheme that converges to the optimal set of

(2.4). In this process, sometimes it is convenient to study a related optimisation

problem, called the dual optimisation problem, and recover the optimal solution

of (2.4) by means of the optimal solution to the dual problem. To this end, we

consider the Lagrangian function associated to (2.4)

L(x, λ) = f(x) + λh(x), (2.10)

where λ is a non-negative scalar. For every λ ≥ 0 and feasible point x of

(2.4), we have that

L(x, λ) ≤ f(x)

which then implies infx∈X L(x, λ) ≤ f ?, where f ? is the optimal value of (2.4). Let

v(λ) = infx∈X L(x, λ). The previous argument then shows that v(λ) ≤ f ? for all

λ ≥ 0. In other words, the optimal value of the optimisation problem

maximise
λ≥0

v(λ), (2.11)

which is denoted by v?, is a lower bound to f ?, i.e., we have that v? ≤ f ?. Inequality

v? ≤ f ? is referred to as weak duality and holds irrespective of (2.4) being convex or

not (for more details, please refer to [21, Chapter 5] or [10, Chapter 4]). Whenever

v? = f ? we say that strong duality holds. A sufficient condition for this to happen

is if f and h are convex and there exist a feasible point in the interior of the domain

of f such that h(x) < 0. The latter condition is called Slater’s condition.

2.3.3 Chance-constrained optimisation

In this section, we introduce a formulation of optimisation problems with uncertain

constraints. Let (∆,F ,P) be a probability space (see Section 2.2). Fix an upper



24 2.4. Compression learning

bound for the probability of constraint violation ε ∈ (0, 1), then the chance-

constrained formulation of an optimisation problem is given by

minimise
x∈X

c>x

subject to P{δ : g(x, δ) > 0} ≤ ε,
(2.12)

where X ⊂ Rd is a closed, convex set with non-empty interior, c ∈ Rd is a vector, and

function9 g : Rd ×∆→ R is measurable10 in the second argument for each x ∈ X .

The feasible set of (2.12) is composed of points x ∈ Rd such that the probability

that a sample δ drawn from P violates the constraint g(x, δ) ≤ 0 is smaller than ε.

It is known that the feasible set of (2.12) may be non-convex, even when the

function g(·, δ) : Rd → R is convex for all δ ∈ ∆ [117], [118], so (2.12) is in

general hard to solve. Chapters 5 and 6 of this thesis address an approximation

of (2.12) that is based on independent and identically distributed samples from

the uncertain parameter δ ∈ ∆.

2.4 Compression learning

In this section, we briefly introduce some concepts related to statistical learning

theory and prove for completeness the main result of [94], which constitutes the

basis of the results presented in Chapters 5 and 6.

The learning problem we are interested in can be formulated in terms of the

probability measure space (∆,F ,P). We aim to learn a subset of the uncertainty

space ∆, called the target set and denoted by T , by means of m-independent

and identically distributed (i.i.d.) samples S = {δ1, . . . , δm}. Due to the samples

being i.i.d, we can consider S as an element in the probability measure space

(∆m, σ(∏m
i=1F),Pm) (refer to Section 2.2 for a brief introduction to this construction).

Throughout this thesis we may consider S as a subset of ∆, writing S ⊂ ∆, or

as an element of ∆m, writing S ∈ ∆m.
9Note the overlapping notation. In Section 2.3.1 g denoted the subgradient of a convex function,

whereas here g denotes a measurable function. We hope this is clear from the context.
10This implies that the set {δ ∈ ∆ : g(x, δ) > 0} = g−1(x,A), with the Borel set A = (0,∞), is

an element of F , hence rendering (2.12) well-defined, as P is defined only on measurable sets. See
Sections 2.1 and 2.2 as well as [130] for more details about this construction.
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We assume that an oracle that labels each element of the unknown target set

T is available. Our goal is to approximate T by using a mapping A : ∆m → 2∆

that takes as input the available samples S and outputs a subset of ∆, represented

by A(S), and referred to as the hypothesis set. In other words, based on the

available information encoded in S, we aim to create an approximation of the target

space T through the subset A(S). It is worth mentioning that we are defining the

mapping A for any cardinality m, even though this is not explicity mentioned in

our notation. Under this convention, observe that we can make sense of A(C) for

any C ⊂ S. We will come back to this point later.

To measure the distance between the target and the hypothesis set we use

dP(T,A(S)) = P{(T \ A(S)) ∪ (A(S) \ T )},

which measures the probability of the symmetric distance between T and A(S)

(see [147, Chapter 1] for more details). The mapping A is said to be probably

approximately correct (PAC) if for all ε ∈ (0, 1) and for all m ∈ N there exists

a function q : N × [0, 1] → R such that

Pm{S ∈ ∆m : dP(A(S), T ) > ε} ≤ q(m, ε), with lim
m→∞

q(m, ε) = 0. (2.13)

Inequality (2.13) is required to hold irrespective of the probability measure P, and

hence typical results in PAC learning are distribution-free.

The following definition is key to establish sufficient conditions that guarantee

the existence of bounds as in (2.13).

Definition 15 (Compression set). Fix m ∈ N, and consider S ∈ ∆m. Let ζ < m,

and C ⊂ S with cardinality |C| = ζ. Consider a mapping A : ∆m → 2∆. If

δ ∈ A (C) , for all δ ∈ S,

then C is called a compression set of cardinality ζ for A.

In other words, a compression set C contains sufficient information to generate

a subset A(C) of ∆ that contains all the samples in S. This latter property is

called consistency within the learning theoretic literature.
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Remark 1. As stated earlier, the mapping A is usually defined for any cardinality

of the set S. For instance, let

A(S) = {δ ∈ ∆ : g(x?(S), δ) > 0}, (2.14)

where x?(S) is the optimal solution of

minimise
x

c>x

subject to g(x, δ) ≤ 0, for all δ ∈ S. (2.15)

The optimisation problem (2.15) has one constraint for each element of S and is

called a scenario program (please refer to Chapters 5 and 6 for more details). For

any C ⊂ S, the mapping A(C) is given by (2.14) with x?(S) being replaced by x?(C),

the solution of (2.15) with only the constraints generated by the samples in C being

enforced. We do not index the mapping A by the cardinality of its input set as this

will be marginal for our results and would only introduce unnecessary notation.

The notion of compression sets can be used to derive PAC bounds that quantify

the confidence with which A(S) is an approximation for the target set T . Specifically,

we are interested in establishing uniqueness and existence of a compression set

associated with A to provide the following PAC result.

Theorem 1 ([94], Theorem 3). Let T ⊂ ∆ be an unknown target set. Consider

m independent samples, S = {δ1, . . . , δm}, from P and suppose that there exists a

unique compression set of size ζ < m associated to a mapping A : ∆m → 2∆. Then

for any ε ∈ (0, 1) we have that

Pm{S ∈ ∆m : dP(A(S), T ) > ε} =
ζ−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (2.16)

Proof. Let E = {S ∈ ∆m : dP(A(S), T ) > ε} ⊂ ∆m and V : ∆m → [0, 1] be the

random variable

V (S) = dP(T,A(S)). (2.17)
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Our goal is to compute Pm{E}, which is the tail of the distribution of the random

variable V : ∆m → [0, 1] in (2.17). To this end, we use existence and uniqueness of

a compression set to produce a partition for the uncertainty space ∆m. In fact, note

that if there exists a unique compression set, then the collection of subsets given by

AJ = {S ∈ ∆m : A(J) contains all the samples in S}, J ⊂ S, |J | = ζ,

partitions the space ∆m since AI and AJ are disjoint sets for I 6= J with I, J ⊂ S

having cardinality ζ (due to uniqueness), and ∪ J⊂S
|J |=ζ

AJ is equal to ∆m (due to

existence). Since (∆m, σ(∏m
i=1F),Pm) is a probability measure space, we have that

∑
J⊂S
|J |=ζ

Pm{AJ} = Pm
{
∪ J⊂S
|J |=ζ

AJ

}
= Pm{∆m} = 1, (2.18)

where the first equality is due to the fact that the collection (AJ) J⊂S
|J |=ζ

is pairwise

disjoint, the second to the fact that the union of such a collection is the whole

space, and the third due to (∆m, σ(∏m
i=1F),Pm) being a probability measure space.

Besides, as the mapping A(S) is permutation invariant, we conclude that the events

AJ are equally likely. By (2.18), we then obtain that11

(
m

ζ

)
Pm{AJ} =

(
m

ζ

)
E{AJ} =

(
m

ζ

)
E{E{AJ |V (S)}}, (2.19)

where the last equality follows from the tower property (or Radon-Nikodym’s

theorem, see Chapters 9 and 14 in [150]) by conditioning under the random variable

V (S) in (2.17). Using the consistency property in the definition of the compression

set we have that

E{AJ |V (S)} = (1− V (S))m−ζ ,

due to the i.i.d. assumption on the samples in S and the fact that all samples not

in AJ must be in A(S) ∩ T . Hence, from (2.18) and (2.19), we obtain

1 =
(
m

ζ

)
E{E{AJ |V (S)}} =

(
m

ζ

)∫
∆m

(1− V (δ))m−ζdPm(δ)

=
(
m

ζ

)∫
∆m

φ(V (δ))dPm(δ) =
(
m

ζ

)∫
∆m

(1− s)m−ζdF (s), (2.20)

11The notation E{AJ} for a set AJ indicates the expectation of the indicator function 1Aj
of

AJ .
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Figure 2.1: Schematic diagram with the interdependence of the results of this chapter
with the subsequent ones in this thesis.

where φ(s) = (1 − s)m−ζ and F (s) = Pm ◦ V −1(0, s] is the distribution function

of the random variable V (S). To obtain the last equality in (2.20) we have used

Proposition 3. Hence, the distribution of V satisfies the following moment problem(
m

ζ

)∫
∆m

(1− s)m−ζdF (s) = 1, for all m ≥ ζ. (2.21)

As well noticed in [29], the unique solution to (2.21) is the distribution given by

F (s) = sζ . To conclude the proof of this theorem, we use the total law of probability

to obtain

Pm{E} =
∑
J⊂S
|J |=ζ

Pm{AJ ∩ E} =
(
m

ζ

)
E{AJ ∩ E} =

(
m

ζ

)
E{E{AJ |V (S), E}}

=
(
m

ζ

)∫ 1

ε
(1− s)m−ζdF (s) =

ζ−1∑
i=0

(
m

i

)
εi(1− ε)m−i, (2.22)

where in the fourth equality we have again used Proposition 3, and in the fifth

inequality we have used the fact that F (s) = sζ . The details of the latter

computation have been omitted for brevity but can be found in [29]. This concludes

the proof of the theorem.

2.5 Further reading

For the sake of brevity we have only presented in this chapter the minimal content to

make this thesis self-contained if we assume a full knowledge on linear algebra, control
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theory, and real analysis. The topological concepts of Section 2.1, though sufficient

for our purposes, are condensed and a full treatment of the topic can be found in [99]

for an introduction and in [113] for a more advanced treatment. As for Section 2.2,

we refer to excellent books [127], [130], [150] for a thorough treatment of the subject.

Additional material to support Section 2.3 includes [10], [21], for a introduction to

the subject, and [4], [122], [138], for a more advanced presentation. The result of

Section 2.4 can be found in [94]. For related results on statistical learning theory,

the reader is referred to [51], [146] and to the book [147] and references therein.

2.6 Mathematical tools in this thesis

Sections 2.1 and 2.2, though not strictly essential for an understanding of the

results presented in this thesis, provide us with a solid mathematical foundation

towards the results here presented.

To clarify how the concepts presented in this chapter are related to subsequent

chapters, we present the diagram in Figure 2.1. Topological concepts are important

to understand some technicalities related to optimisation problems and developments

of technical lemmas in Chapter 3. These also lead to a proper understanding on

some measure theoretic concepts that then form the basis for chance-constrained

problems (CCP) and, consequently, all the results in Sections 2.4 and Section

2.2, and Chapters 5 and 6.

Observe in the diagram of Figure 2.1 that all subsections of the Section 2.3

have been highlighted so that their role in subsequent chapters is emphasised. For

instance, we can notice that Subsection 2.3.1 on convex functions is crucial to all

subsequent chapters, while Subsection 2.3.3 on chance-constrained optimisation

is related to the results in Chapters 5 and 6 and Subsection 2.3.2 on duality

theory is related to Chapter 4.



30



3
Subgradient averaging for multi-agent

optimisation

This chapter addresses the problem of scalability in optimisation algorithms men-

tioned in Chapter 1 of this thesis. We rely on distributed optimisation over multi-

agent networks that leverages distributed computation to solve large-scale problems.

3.1 Introduction

Distributed optimisation deals with multiple agents interacting over a network

and has found numerous applications in different domains, such as wireless sensor

networks [5], [98], robotics [95], and power systems [19], due to its ability to

parallelize computation and prevent agents from sharing information considered as

private. Typically, distributed algorithms are based on an iterative process in which

agents maintain some estimate about the decision vector in an optimisation context,

exchange this information with neighbouring agents according to an underlying

communication protocol/network, and update their estimate on the basis of the

received information.

Despite the intense research activity in this area, only a few algorithms can si-

multaneously deal with time-varying networks, non-differentiable objective functions

31
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and account for the presence of constraints [82], [92], [100], [152], [155], features

that are often treated separately in the literature.

In this chapter, we study a class of optimisation problems that involves a

separable objective function, while the feasible set can be decomposed as an

intersection of different compact convex sets. A similar algorithm to the one

presented in this chapter can be found in [67]; however, no analysis for the particular

setting we are considering is presented. Besides, references [78], [84] characterize

the convergence rate of a sub-gradient algorithm under different constraint sets

per agent that does not possess subgradient averaging, and [92], [155] show

asymptotic convergence of distributed algorithms with different constraint sets

and time-varying communication network. Hence, by combining (sub)-gradient

averaging and providing an analysis that yields convergence rates under time-varying

communication networks and different constraint sets per agent, the results in this

chapter are distinct from all the above literature.

Another closely related algorithm to the one presented here is the one in [91].

This provides convergence rates assuming a regularity condition on the local sets

(weaker than compactness) and requiring the network to be row-stochastic; however,

it does not analyse the case where the communication network is time-varying.

This requires different analysis arguments, thus complementing the results in [91],

extending them to allow for time-varying networks.

Although only marginally related to the results of this chapter, it is worth

mentioning distributed algorithms that deal with similar optimization problems [120],

[133], [137]. Paper [133] proposes an algorithm whose convergence is valid for non-

convex objectives and directed communication network, while [120], [137] use a

constant step size to establish linear convergence rates for strongly convex functions.

Moreover, distributed algorithms based on proximal methods with constant step

sizes have been proposed in [38]. In this setting, the objective function is assumed

to be differentiable to obtain convergence to the optimal solution of problem (3.1),

and the size of the allowable step-size is upper bounded by a quantity related to
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Table 3.1: Summary of distributed schemes for smooth and non-smooth optimisation.

Smooth + Constant step-size Non-smooth + Diminishing step-size
Common sets Different sets Common sets Different sets

Convex Strongly Convex Strongly Convex Strongly Convex Strongly
Convex Convex Convex Convex

No (sub)grad. avg. [64], [101], [153] [153] [79] - [100], [133] [85], [142] [78], [84], [92], [155] -
(Sub)grad. avg. [120], [133], [137] [120], [133], [137] - - [46], [82], [133], [152] - our work, [91] -

the Lipschitz constant of the objective function. Unlike these results, we allow

for non-differentiable objective functions.

To better position this chapter within the recent literature, we summarise

the main distributed algorithms that are amenable to smooth and non-smooth

constrained optimisation in Table 3.1. We highlight both scenarios of common and

different local constraint sets, which are indicated in the table by common sets

and different sets, respectively. In this brief summary, we restrict our attention to

algorithms that use constant step size for smooth optimisation, and to those that

use diminishing step sizes for the non-smooth case. We also present a categorisation

of these schemes between those that have results for general convex functions

and strongly convex functions. In row entitled “No (sub)grad. avg.”, we include

distributed algorithms based on projected (sub)gradient, proximal minimisation,

and primal-dual update that do not leverage on averaging first-order information

from neighbouring agents. In contrast, row “(Sub)grad. avg.” includes algorithms

that exploit (sub) gradient averaging. Among the few algorithms that are suitable

for different local sets, the one proposed in this chapter is the first to possess a

convergence rate that matches that of the common local sets case, and simultaneously

allows agents to use first-order information of their neighbours under time-varying

communication networks, and may speed up practical convergence. The main

contribution of this chapter is the introduction and the characterisation of the

convergence rate for a new subgradient averaging algorithm. The proposed scheme

allows us to account for time-varying networks, non-differentiable objective functions

and different constraint sets per agent as in [92], while achieving faster practical

convergence as it is based on subgradient averaging as in [46], [67], [91]. We highlight

that allowing simultaneously for different constraint sets per agent and time-varying
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communication network by means of a subgradient averaging scheme is a distinct

feature of the algorithm proposed in this chapter.

This chapter is organised as follows. In Section 3.2 we present the problem

statement and main assumptions, followed by a numerical construction that moti-

vates the algorithm of this chapter. In Section 3.3 we present the proposed scheme

and the main convergence results, namely, asymptotic convergence in iterates and

a convergence rate as far as the optimal value is concerned. In Section 3.4 we

study the robust linear regression problem and `2 regression with regularisation

to demonstrate the main algorithmic features of our scheme and to compare our

strategy against existing methods. Finally, the connection between the results in

this chapter with the main problems stated in Chapter 1 is presented in Section

3.5. All the proofs have been deferred to Section 3.6.

3.2 Problem statement and a motivating example

3.2.1 Problem set-up and network communication

Consider the optimisation problem

minimise
x

f(x) =
m∑
i=1

fi(x)

subject to x ∈ ∩mi=1Xi,

(3.1)

where x ∈ Rn is the vector of decision variables, and fi : Rn → R and Xi ⊂ Rn

constitute the local objective function and constraint set, respectively, for agent i,

i = 1, . . . ,m. We suppose that each agent i possesses as private information the

pair (fi, Xi) and maintains a local estimate xi of the common decision vector x.

The goal is for all agents to agree on the local variables, that is, xi = x?,

for all i = 1, . . . ,m, where x? is an optimiser of (3.1), i.e., a feasible point such

that f(x?) ≤ f(x) for all x ∈ ∩mi=1Xi. Throughout this chapter we impose the

following assumption:

Assumption 1. We assume that:

i) For all i = 1, . . . ,m, the function fi is convex.
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ii) The set Xi ⊂ Rn is compact and convex for all i = 1, . . . ,m, and ∩mi=1Xi has

a non-empty interior.

iii) The subgradient of the function f(x) is bounded on ∪mi=1Xi, that is, L =

max ξ∈∂f(x),
x∈∪m

i=1Xj

‖ξ‖2 <∞, where ∂f(x) represents the subdifferential of f at x.

Assumption 1 imposes standard restrictions for constrained non-smooth op-

timisation. Item ii) implies informally that ∪mi=1Xi has volume in Rn, i.e., that

the affine hull of ∪i=1Xi has dimension n. Moreover, the compactness assumption

of item ii) guarantees that the optimal set of problem (3.1) is non-empty. Item

iii) is an assumption that is needed to prove convergence of sub-gradient methods

applied to problem (3.1). Under item iii), the sub-gradient of the function f

can be evaluated at points that belong to ∪mi=1Xi. We provide in Section 3.6.2 a

technical condition on the domain of the functions fi that is sufficient to guarantee

that Assumption 1, item iii), holds. An important consequence of Assumption 1

is given in the following lemma.

Lemma 1. Under Assumption 1, we have that:

i) The set conv(∪mi=1Xi) is compact.

ii) The function f is Lipschitz continuous over ∩mi=1Xi, i.e., the following in-

equality hods

|f(x)− f(y)| ≤ L‖x− y‖2, ∀ x, y ∈ ∩mi=1Xi,

where L is the constant defined in Assumption 1, item iii).

Typical choices of functions that satisfy Assumption 1 are piecewise-linear

functions, quadratic convex functions and the logistic regression function.

In this chapter we concentrate in solving problem (3.1) through a network of

agents that use only the available local information, namely, the pair (fi, Xi) and the

current estimate for the optimal solution, xi(k), i = 1, . . . ,m, maintained by agent

i at a given instance k. We will show how xi(k), i = 1, . . . ,m, can be constructed
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and updated in Section 3.3, with k playing the role of iteration index. Let us first

characterise the underlying communication network. Let G(k) = (N , E(k)) be an

undirected graph, where N = {1, . . . ,m} is the number of agents and E(k) ⊂ N×N

is the set of edges at iteration k, that is, only if node (j, i) ∈ E(k) then node j sends

information to node i at iteration k. We associate the time-varying matrix A(k) to

the edge set E(k), with aji(k) > 0 only if (j, i) ∈ E(k) at time k. As the graph is

undirected, the matrix A(k) can be chosen to be symmetric. We also define the

graph G∞ = (N , E∞), in which (j, i) ∈ E∞ if agent j communicates with agent i

infinitely often. We impose the following assumptions on the matrix A(k).

Assumption 2. We assume that:

i) The graph (N , E∞) is strongly connected. Moreover, there exits a uniform

upper bound on the communication time for all (j, i) ∈ E∞.

ii) There exists τ ∈ (0, 1) such that for all k ∈ N and for all i, j = 1, . . . ,m,

aii(k) ≥ τ , and if aji(k) > 0 then we have that aji(k) ≥ τ .

iii) Matrix A(k) is doubly stochastic.

These are standard requirements in the distributed optimisation literature. We

refer the reader to [46], [92], [102], [103] for more details.

3.2.2 Dealing with different constraint sets

Before proceeding to the presentation of the proposed algorithm, we would like to

motivate the need to developing a different analysis to deal with different constraint

sets. To this end, consider the iterative scheme1

zi(k + 1) =
m∑
j=1

ajizj(k) + gi(k) (3.2a)

xi(k + 1) = argmin
ξ∈Xi

zi(k + 1)>ξ + 1
c(k)‖ξ‖

2
2, (3.2b)

1It should be noted that zi, i = 1, . . . ,m, in (3.2a) should not be confused with that of Step 2
in Algorithm 1 presented in the sequel; we use the same symbol to match the notation in [46] and
ease the reader.
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which consists of a modified version of the algorithm considered in [46], adapted to

account for different constraint sets in each agent’s local optimisation problem. In

the setting of the previous section, notice that matrix A in (3.2a) corresponds to

a fully-connected, time-invariant network. Assumption 2 is satisfied if the graph

(N , E) is strongly connected and matrix A is doubly-stochastic.

Observe that (3.2a) constitutes a subgradient update step, with neighbouring

local variables zj(k) being “mixed” according to the matrix A and added to

gi(k) ∈ ∂fi(xi(k)), i.e., a subgradient of fi evaluated at xi(k), i = 1, . . . ,m.

Step (3.2b) is an optimisation program with the objective function being the

sum (weighted via c(k)) of

zi(k + 1)>ξ: linear “proxy” of fi,

and a regularization term ‖ξ‖2
2. To comply with [46], we set c(k) = 1√

k+1 . Recall that

the algorithm in [46] involves the same constraint set in the update rule of (3.2b),

that is Xi = X for all i = 1, . . . ,m, and possesses a guaranteed convergence rate of

O( ln k√
k

) for the running averages of the iterates xi(k); here, we introduce a different set

Xi per agent and show that this (natural) modification may lead to erroneous results.

Consider a two-agent instance of (3.1), i.e., m = 2 with x ∈ R2, fi =

x>Qx + q>i x + ri, for i = 1, 2 and

Q =
[
1.2 0.4
0.4 1.8

]
, q1 =

[
8
−4

]
, q2 =

[
2.93
−11.46

]
,

r1 = 20, r2 = 25. (3.3)

The local constraint sets are given by X1 = [−1, 1]× [−1, 1] and X2 = [0.5, 2.5]×

[0.5, 2.5]. The feasible set X1∩X2 is the box [0.5, 1]× [0.5, 1]. Figure 3.1 depicts the

level curves of the quadratic functions f1(x) (dashed-red lines), f2 (double-dashed

lines), and f = f1 + f2 (solid-black lines). The red and blue boxes represent the

sets X1 and X2 respectively, with the feasible set, X1 ∩X2, being also indicated

in the figure in black.

By inspection the optimal solution of f1 under the constraint x ∈ X1 is x̂?1 =

[−1, 1]>. Similarly, the optimal solution for f2 under x ∈ X2 is x̂?2 = [0.5, 2.5]>.

We then have the following proposition.
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Figure 3.1: Geometric representation of problem instance encoded by (3.3). The red
ellipsoids (dashed lines) correspond to the level curves of f1, the blue ellipsoids (double-
dashed lines) represent the function f2, while the black (solid lines) ellipsoids to the
ones of f = f1 + f2. The shaded red box illustrates the constraint set X1, while the
shaded blue box illustrates X2. Vectors x̂?1 = [−1, 1]> and x̂?2 = [0.5, 2.5]> are the optimal
solutions of f1(x) and f2(x) under the constraints X1 and X2, respectively. The global
optimal solution of f = f1 + f2 with matrices given by (3.3) subject to x ∈ X1 ∩X2 is
denoted by x?. This construction shows that x̂?1 and x̂?2 constitute fixed-points of (3.2)
thus preventing the iteration from reaching x? if initialised at those points.

Proposition 5. Let (zi(k))k∈N, (xi(k))k∈N, i = 1, 2, be the sequences generated by

algorithm (3.2) when applied to problem (3.3) with initial conditions xi(0) = x̂?i ,

i = 1, 2, and with A = 1
211> and c(k) = 1√

k+1 . We have that

x1(k) = x̂?1, x2(k) = x̂?2, ∀k ∈ N.

Proposition 5 shows that x̂?1 and x̂?2 constitute fixed points of (3.2), hence the

iteration cannot reach x? if initialised from these points. This highlights the fact

that not all algorithms that have been proposed so far can be extended to the

setting where local constraint sets are different.
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3.3 Distributed Methodology

3.3.1 Proposed algorithm

The main steps of the proposed scheme are summarized in Algorithm 1. We

initialise each agents’ local variable with an arbitrary xi(0) ∈ Xi, i = 1, . . . ,m;

such points are not required to belong to ∩mi=1Xi.

At iteration k, agent i receives xj from the neighbouring agents and averages

them through A(k), which captures the communication network, to obtain zi(k).

Recall that we denote the element of the j-th row and i-th column of matrix A(k)

by aji(k). Agent i then calculates a subgradient, gi, of its own objective function

evaluated at zi(k) and broadcasts this information back to its neighbours. In the

sequel, agent i averages the received gj(zj(k)) in order to compose a proxy for a

subgradient of f(x), namely, di(k). Finally, agents minimise a linear proxy di(k)>ξ

of f(ξ) plus a regularization term weighted by 1
c(k) . An alternative interpretation

of this last computation is that agents update their local estimates by performing

a subgradient step with step size c(k) and projecting zi(k)− c(k)di(k) onto their

local set. Indeed, Step 4 in Algorithm 1 can be rewritten as

xi(k + 1) = PXi
[zi(k)− c(k)di(k)]

where PXi
[·] denotes projection onto the set Xi.

Algorithm 1 Proposed distributed algorithm
Require: : xi(0), i = 1, . . . ,m

For i = 1, . . . ,m, repeat until convergence
1: Compute zi(k) = ∑m

j=1 aji(k)xj(k),

2: Pick gi(zi(k)) ∈ ∂fi(zi(k)),

3: Compute di(k) = ∑m
j=1 aji(k)gj(zj(k)),

4: Compute xi(k + 1) = argminξ∈Xi
di(k)>ξ + 1

2c(k)‖zi(k)− ξ‖2
2,

5: Set k ← k + 1

end
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3.3.2 Convergence results for Algorithm 1: square-summable
step sizes.

Throughout this section, we impose the following assumption on the step size c(k).

Assumption 3. Let (c(k))k∈N be the sequence adopted in Algorithm 1. We require

that:

i) c(k) is non-negative and non-increasing;

ii) ∑∞k=1 c(k) =∞ and ∑∞k=1 c(k)2 <∞.

A sequence satisfying Assumption 3 is c(k) = η
k+1 , for η > 0. The value of η in

this chapter should be treated as a hyper-parameter that should be tuned, as it can

improve the convergence of the proposed scheme. From our numerical examples,

we have noticed that η in the interval (0.1, 1) yields an acceptable performance.

Theorem 2. Let (xi(k))k∈N be the sequences generated by Algorithm 1, for all

i = 1, . . . ,m. Under Assumptions 1- 3, we have that for some minimiser x?

of (3.1),

lim
k→∞
‖xi(k)− x?‖2 = 0, ∀ i = 1, . . . ,m.

The proof of Theorem 2, as well as of Theorem 3 presented in 3.3.3, is based

on some auxiliary technical results presented in Section 3.6.4.

Theorem 2 extends the result in [92] by allowing an agent to communicate

subgradient information to neighbouring agents, a feature that, as illustrated in

Section 3.4, can speed up practical convergence.

3.3.3 Convergence results for Algorithm 1: step sizes pro-
portional to 1√

k
.

We now impose the following assumption on the step size c(k).

Assumption 4. The sequence (c(k))k∈N used in Algorithm (1) is c(k) = η√
k+1 , for

some η > 0.
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Our convergence rate results build on the following related sequence generated

by Algorithm 1,

x̂i(k + 1) := c(k + 1)xi(k + 1) + S(k)x̂i(k)
S(k + 1) , (3.4)

where S(k) = ∑k
r=1 c(r), and (xi(k))k∈N, for all i = 1, . . . ,m, are the sequences

generated by Algorithm 1, with initial condition x̂i(0) = xi(0). By rewriting (3.4)

as x̂i(k) = 1
S(k)

∑k
r=1 c(r)xi(r), we can interpret (3.4) as a convex combination

of past iterates.

Theorem 3. Consider the running average defined in (3.4). Under Assump-

tions 1, 2, and 4, we have that:

i) For all i, j = 1, . . . ,m, the sequence (‖x̂i(k)− x̂j(k)‖)k∈N converges to zero at

a rate O( ln k√
k

).

ii) All accumulation points of the sequences (x̂i(k))k∈N, i = 1, . . . ,m, are feasible.

iii) There exist B1, B2 > 0 such that∣∣∣∣∣
m∑
i=1

fi(x̂i(k))− f(x?)
∣∣∣∣∣ ≤ B1

1√
k

+B2
ln k√
k
. (3.5)

Note that Theorem 3 asserts convergence of the function value along the running

average x̂i(k), i.e., all limit points of (x̂i(k))k∈N are optimal. However, the iterates

might exhibit an oscillatory behaviour. If, for instance, function f is strongly

convex, then Theorem 3 yields a convergence rate for the generated iterates. For the

exact expression of B1 and B2, we refer the reader to Section 3.6.6. The absolute

value in Theorem 3 is due to the fact that x̂i(k) may not be necessarily feasible;

however, item ii) in Theorem 3 implies that all accumulation points of (x̂i(k))k∈N,

i = 1, . . . ,m, are feasible. Item i) states the rate at which consensus is achieved

for the sequences (x̂i(k))k∈N, i = 1, . . . ,m.

It should be noted that the result of Theorem 3 further extends the work

presented in [92] not only by allowing agents to communicate their (sub-)gradients,

but by also unveiling how to (non trivially) adapt the proof line in that paper
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to come up with convergence results that recover traditional rates for distributed

subgradient methods. Theorem 3 represents the first convergence rate result under

the assumptions considered in this chapter.

rate

3.4 Numerical Examples

3.4.1 Problem instance of Section 3.2.2 – revisited

We revisit the two-agent problem in (3.3), for which the iterative scheme in (3.2)

is not guaranteed to converge, and apply instead our algorithm. Note that the

optimal solution of (3.3) is given by

x? = P[0.5,1]2

[
−1

8Q
−1(q1 + q2)

]
=
[
0.5
1

]

where P[0.5,1]2 [·] represents the projection onto the feasible set of problem (3.3).

Pictorially x? is shown in Figure 3.1. To illustrate the convergence properties of

Algorithm 1 we monitor the evolution of
√∑2

i=1 ‖xi(k)− x?‖2
2, where (xi(k))k∈N,

i = 1, 2, are the iterates generated by Algorithm 1. We use c(k) = 1√
k+1 similarly

to [46], A = 1
211> and xi(0) = x̂?i , where x̂?i , i = 1, 2, are defined in Section 3.2.2.

Observe that our initial condition is the same as in Proposition 5. In contrast,

as shown in Figure 3.2, the iterates generated by Algorithm 1 converge to the

optimal solution of (3.3).

3.4.2 Example 2: robust linear regression

We consider the problem of estimating an unknown (but deterministic) vector

x ∈ Rn from m noisy measurements yi by means of the linear model

yi = b>i x+ vi, i = 1, . . . ,m,

with bi ∈ Rn, and vi are independent random variables drawn from a Laplacian

distribution, that is, for each i the density of vi is given by hvi
(z) = 1

2a exp−|z|/a,

for all z ∈ R. A common strategy is to impose a norm constraint of the form
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Figure 3.2: Evolution of
√∑2

i=1 ‖xi(k)− x?‖22 for (3.3), where (xi(k))k∈N, i = 1, 2, are
the iterates generated by Algorithm 1.

‖x‖2 ≤ c, for some c > 0, to reflect some prior knowledge on the unknown vector

x, and solve the second order conic program

x̂ ∈ argmin
‖x‖2≤c

‖y −Bx‖1. (3.6)

Typically, (3.6) is referred to as robust regression in the literature, as the `1-norm

penalises relatively less outliers than other convex metrics (e.g., quadratic penalties).

In our set-up, we consider the case where data are collected locally and agents are

not willing to share their measurements with a central processing unit.

Observe that (3.6) has the format of (3.1) by setting Xi = X = {x ∈ Rn :

‖x‖2 ≤ 5} and fi(x) = |yi − b>i x|, i = 1, . . . ,m. Moreover, the constraint sets Xi

and the objective functions fi, i = 1, . . . ,m, trivially satisfy Assumption 1. Hence,

we can apply the proposed scheme to obtain a solution to (3.6). We consider m = 30

and n = 4 and generate y independently from a standard Gaussian distribution,

and matrix B from a uniform distribution with support [0, 1].

We solve (3.6) in a distributed manner, and compare Algorithm 1 with the one

proposed in [46] under four different network connectivity structures: i) complete

network graph (which corresponds to the centralised version of the problem); ii) line

network graph; iii) sparse network graph with sparsity degree d = 0.3; iv) sparse
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network graph with sparsity degree d = 0.8. We say that a network with m agents

has a sparsity degree d ∈ (0, 1) if the number of connections among the network nodes

is given by dm2, where m2 indicates the number of connections of a complete graph.

We assess the performance of Algorithm 1 for each of the aforementioned

networks in Figure 3.3. Solid lines correspond to Algorithm 1, whereas dashed

lines correspond to the algorithm proposed in [46]. Different colours correspond

to the different network connectivities. For each case, we monitor the evolution

of |
∑30

i=1 fi(xi(k))−f?|
f? , where f ? is the optimal value of (3.6). The proposed scheme

exhibits similar and often favourable performance with the one in [46], in particular

for cases where the underlying graph is not sparse. It should be noted, however,

that Algorithm 1 possesses more general convergence properties, i.e., the proposed

scheme is guaranteed to converge under non-identical local sets.

Note that due to the fact that Algorithm 1 requires two rounds of communication

per iteration, the results presented in Figure 3.3 should be rescaled by a factor of

two if we use communication rounds instead of the iteration index.

0 50 100 150 200 250 300 350 400

10
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Figure 3.3: Evolution of |
∑30

i=1 fi(xi(k))−f?|
f? for Algorithm 1 (solid lines) and the one

in [46] (dashed lines) when applied to the robust regression problem given by (3.6). The
different colours correspond the different network connectivities.
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3.4.3 Example 3: `2 linear regression with regularisation

In this example, we consider a variation of the regression problem where we assume

vi, i = 1, . . . ,m, to be independent and Gaussian, i.e., the density function is

given by hvi
(z) = 1√

2πe
− z2

2 , for all z ∈ R, for all i = 1, . . . ,m, and we assume

that x is sparse. A common relaxation of this problem is to choose the maximum

likelihood estimator x̂ such that

x̂ = argmin
x∈X

‖y −Bx‖2
2 + λ‖x‖1, (3.7)

where X can be interpreted as a set including prior beliefs, e.g., ‖x‖2 ≤ c or

x ≤ x ≤ x̄ for some vectors x, x̄ ∈ Rn. The estimator x̂ obtained by solving (3.7)

depends on the value of the parameter λ. In fact, the larger the value of λ, the worse

the performance is in terms of the error and the sparser the obtained solution is.

In this example, we aim to verify the performance of Algorithm 1 under step

size choices c(k) ∝ 1
k+1 and a time-varying communication network. Similar to

the previous example, the vector y is generated according to a standard normal

distribution and matrix B from a uniform distribution on the interval [0, 1]. We

assume m > n and consider the case where agents possess private, local information,

encoded by Xi = [xi, x̄i] i = 1, . . . ,m, such that X = ∩mi=1Xi = [x, x̄].

The algorithm presented in [46] does not necessarily converge in the set-up of

problem (3.7), as we have different constraint sets per agent. We thus compare our

algorithm against the one proposed in [92], which converges under similar conditions

but does not leverage subgradient averaging. This allows us to assess the impact

of averaging subgradients on practical convergence.

We now investigate the behaviour of the proposed algorithm in the presence of

time-varying communication networks. To this end, we setm = 300 and n = 10, and

generate four network configurations with different sparsity patterns, alternating

cyclically among these. We also set c(k) = 0.2
k+1 for both Algorithm 1 and the one

in [92]. Figure 3.4 shows the evolution for the average distance to the optimal

solution for Algorithm 1 (solid-red line) and the one in [92] (dashed-blue line). We
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Figure 3.4: Evolution of the average distance to the optimal solution given by√∑300
i=1 ‖xi(k)−x?‖2

2

300 for Algorithm 1 (solid-red line) and that of [92] (dashed-blue line).

observe that Algorithm 1 consistently outperforms the one proposed in [92]; this

is mainly due to the sub-gradient averaging step of Algorithm 1.

3.5 Conclusion

In this chapter we proposed a subgradient averaging algorithm for multi-agent

optimisation problems involving non-differentiable objective functions and different

constraint sets per agent. For this set-up we showed by means of a geometric

construction that available schemes involving subgradient averaging cannot be used.

For the proposed scheme we showed convergence of the algorithm iterates to some

minimiser of a centralised problem counterpart. Moreover, we have also established

a convergence rate under a particular choice for the underlying step size.

This concludes the study of the first challenge presented in Chapter 1, showing

that scalability of current optimisation methods can be achieved by leveraging

distributed computation exploiting a multi-agent setting in which agents commu-

nicate over a network. In the next chapter we focus on optimisation problems

with integer decision variables.
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3.6 Proofs of Chapter 3

3.6.1 Proof of Lemma 1

The proof of this Lemma relies on some concepts presented in Chapter 2. Let us

start by proving item i). Consider the continuous mapping φ : Rm×∏m
i=1 Rn → Rn,

defined as φ(γ, x1, . . . , xm) = ∑m
i=1 γixi, where γ = (γ1, . . . , γm) belongs to the

simplex in Rm, denoted by Γ. Consider K = φ(Γ,∏m
i=1Xi), and note that K is

compact, as Γ × ∏m
i=1Xi is compact and the image of a compact set under the

continuous function is compact (see Proposition 1, Chapter 2). Moreover, note

that by definition we have K ⊆ conv(∪mi=1Xi), (due to Proposition 2, Chapter 2)

as any element in K is a convex combination of elements in ∪mi=1Xi. To conclude

the argument, we need to show that conv(∪mi=1Xi) ⊆ K. To this end, it suffices to

show that K is a convex set, due to the fact that the convex hull is the smallest

convex set containing a given set. Let z, w ∈ K, i.e., z = ∑m
i=1 γizi and w =∑m

i=1 βiwi, with zi, wi ∈ Xi, and γ = (γ1, . . . , γm), β = (β1, . . . , βm) ∈ Γ. Fix

an α ∈ (0, 1), and note that αz + (1 − α)w = ∑m
i=1(αγi + (1 − α)βi)xi, where

xi = cizi + (1 − ci)wi ∈ Ai, with ci = αγi

αγi+(1−α)βi
.

Since xi ∈ Ai due to convexity of Ai and αγ+(1−α)β ∈ Γ, we conclude that αz+

(1− α)w ∈ K for any α ∈ (0, 1), thus showing that K is a convex set. This implies

then that K = conv(∪mi=1Xi) as we have established that K ⊆ conv(∪mi=1Xi) and

conv(∪mi=1Xi) ⊆ K. Since K was shown to be compact, we have that conv(∪mi=1Xi)

is also compact. This concludes the proof of item i). An alternative proof can be

found at [10, Prop. 1.2.2]. The proof of item ii) follows from Proposition 5.4.2, p.

185, in [10], and is omitted. This concludes the proof of the lemma.

3.6.2 Sufficient condition for Assumption 1, item iii).

The goal of this subsection is to provide a sufficient condition for Assumption 1,

item iii). The subsequent arguments can be found in standard optimisation books,

such as [122, Theorem 24.7]; however we present here a more direct proof.
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Assumption 5. Let Xi, i = 1, . . . ,m, be the level sets of problem (3.1) and domf

the domain of f . We suppose that:

i) The distance between the set ∪mi=1Xi and the complement of the interior of

the closed and convex domain of f is strictly greater than zero, i.e.,

dist( ∪mi=1 Xi,
(
int(domf)

)c
) = inf

x∈∪m
i=1Xi,

y∈
(

int(domf)
)c

‖x− y‖2
2 > 0.

ii) Xi ⊂ ∩mi=1int(domfi) for each i = 1, . . . ,m.

As a consequence of Assumption 5, and since domf = ∩mi=1domfi, ri(domf) =

∩mi=1ri(domfi) and ri(domfi) ⊂ domfi we have that the subdifferential ∂f(x) is non

empty for each x ∈ ∩mi=1Xi, due to item ii) of Assumption 5 and Proposition 4 in

Chapter 2. Furthermore, ∂f(x) is compact by [10, Proposition 5.4.1] since the affine

hull of domf has dimension n due to Assumption 1, item ii). We use this fact to

show that ∪x∈conv(∪Xi)∂f(x) is a bounded set, that is, ‖g‖2 ≤ L, where g ∈ ∂f(x)

for any x ∈ ∪mi=1Xi. This result is formally stated in the next lemma.

Lemma 2. Under Assumptions 1, items i) and ii) , and 5, we have that the set

∪x∈conv(∪Xi)∂f(x) is non-empty and bounded.

Proof. The proof of the lemma relies on Assumption 5, item ii), that is, Xi ⊂

∩mj=1ri(domfj), for all i = 1, . . . ,m. This implies that conv(∪mi=1Xi) ⊂ ∩mj=1ri(domfj),

as ∩mj=1ri(domfj) is convex and contains ∪mi=1Xi. Suppose, by contradiction,

that ∪x∈conv(∪Xi)∂f(x) is unbounded. Then there exists a sequence (xk)k∈N ⊂

conv(∪mi=1Xi) such that (gk)k∈N, with gk ∈ ∂f(xk), satisfies ‖gk‖2 < ‖gk+1‖2, ∀k ∈

N.

Notice that xk ∈ ∩mi=1int(domfi) by Assumption 5, item ii). By item i) of

Assumption 5, we can construct a sequence (βk)k∈N such that xk+βkdk ∈ ∩mi=1domfi.

with dk = gk/‖gk‖2. Let β = infk∈N βk and notice that β > 0 (i.e., it is bounded

away from zero) due to Assumption 5, item i). By the definition of gk we have that

f(xk + βdk)− f(xk)
β

≥ ‖gk‖2, ∀ k ∈ N. (3.8)
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As inequality (3.8) is valid for all k ∈ N, we take the limit superior on both sides to

obtain

lim sup
k→∞

‖gk‖2 ≤ lim sup
k→∞

f(xi + γdk)− f(xk)
γ

<∞, (3.9)

where the right-hand side of (3.9) is finite as the sequences (xk)k∈N and (dk)k∈N are

bounded (notice that dk is a normalised subgradient), and since f is continuous on

its domain (f is convex). This establishes a contradiction, as we assumed (gk)k∈N
were unbounded, thus concluding the proof of the Lemma.

3.6.3 Proof of Proposition 5

The proof is based on an induction argument.

Base case

We show that zi(1)>(ξ − x̂?j) ≥ 0, for all ξ ∈ Xj, for all i, j = 1, 2, and also that

xi(1) = x̂?, for all i = 1, 2. Consider the inequalities

∇f1(x̂?1)>(ξ − x̂?i ) ≥ 0, ∇f2(x̂?2)>(ξ − x̂?i ) ≥ 0, ∀ξ ∈ Xi, i = 1, 2. (3.10)

Fix i = 1. The first inequality in (3.10) holds due to optimality of x̂?1 [10]. To show

the second inequality observe that ∇f2(x̂?2) = [13.68,−3.94]> , and that ξ − x̂?1 =

[a1, a2]> with a1 ≥ 0 and a2 ≤ 0, for all ξ ∈ X1. To see this latter fact, we can argue

geometrically by inspecting Figure 3.1. Fix any point in the set X1 and notice that

vector point towards x̂?1 with base on this chosen point has the desired property.

Since ∇f1(x̂?1) = [12,−4]> , using a symmetric argument we show that

∇f2(x̂?2)>(ξ − x̂?2) ≥ 0, ∇f1(x̂?1)>(ξ − x̂?2) ≥ 0, ∀ξ ∈ X2. (3.11)

By (3.2a), and under our choice for A,

zi(1) = 1
2

(
∇f1(x̂?1) +∇f2(x̂?2)

)
+∇fi(x̂?i ), (3.12)

for i = 1, 2, hence inequalities (3.10) and (3.11) imply that zi(1)>(ξ − x̂?j) ≥

0, ∀ξ ∈ Xj, for all i, j = 1, 2.
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We will now prove that xi(1) = x̂?i , for i = 1, 2. Fix i = 1. Since z1(1)>ξ+ 2
c(k)‖ξ‖

2
2

is strictly convex, there is a unique point satisfying
(
z1(1) + 2x1(1)

)>
(ξ − x1(1)) ≥ 0, ∀ξ ∈ X1, (3.13)

where (z1(1) + 2x1(1)) is the gradient of the objective function in (3.2b) evaluated

at x1(1), with c(1) = 1. Therefore, it suffices to show that
(
z1(1) + 2x̂?1

)>
(ξ − x̂?1) ≥ 0, ∀ξ ∈ X1. (3.14)

By substituting (3.3) into (3.12), we observe that z1(1)+2x̂?1 = [22.8414,−5.9708]> ,

and due to the structure of ξ − x̂?1, (3.14) holds, thus proving that x1(1) = x̂?1. A

symmetric argument yields that x2(1) = x?2.

Induction hypothesis

Assume that zi(k)>(ξ − x̂?j) ≥ 0 for all ξ ∈ Xj, for i, j = 1, 2, and that xi(k) = x?i

for i = 1, 2. We aim to show that the aforementioned relations remain true

for the step k + 1.

Proof for iteration k + 1

Fix i = 1. Following a similar reasoning with the base case, observe that x1(k+1) =

x?1 if
[
z1(k + 1) + 2

c(k) x̂
?
1

]>
(ξ − x̂?1) ≥ 0, ∀ξ ∈ X1. (3.15)

As the sequence (zi(k))k∈N is generated by (3.2a), we propagate the dynamical

system in (3.2a) by k + 1 steps to obtain

zi(k + 1) = 1
2

(
∇f1(x̂?1) +∇f2(x̂?2)

)
(k + 1) +∇f1(x̂?1),

where we have used the fact that A = 1
m

11> and c(k) = 1√
k+1 . A sufficient

condition for equation (3.15) to hold is that
1

2

(
∇f1(x̂?1) +∇f2(x̂?2)

)
(k + 1) + 2x̂?1

√
k + 1

>(ξ − x̂?1) ≥ 0, ∀ξ ∈ X1, (3.16)
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since ∇f1(x̂?1)>(ξ − x̂?1) ≥ 0 by optimality of x̂?1. Recall that (ξ − x̂?1) = [a1, a2] with

a1 ≥ 0 and a2 ≤ 0 for all ξ ∈ X1. To prove (3.16) we will show that the left-most

vector in the same equation can be written as [b1, b2] for some b1 ≥ 0 and b2 ≤ 0.

To achieve this, notice that k + 1 ≥
√

2
√
k + 1, for all k ≥ 1, and let ei denote the

unit vector with 1 in the i-th position, i = 1, 2. We then have that

e>1

[1
2

(
∇f1(x̂?1) +∇f2(x̂?2)

)]
(k + 1)

≥ e>1

[√
2

2

(
∇f1(x̂?1) +∇f2(x̂?2)

)]√
k + 1, (3.17)

and

2e>2 x̂?1
√
k + 1 ≤

√
2e>2 x̂?1(k + 1), (3.18)

since the first component of the averaged gradient and the second component of

x̂?1 are both positive. Therefore, for all k ∈ N,

b1 ≥ 16.1604
√
k + 1 > 0, b2 ≤ −2.5566(k + 1) < 0. (3.19)

Inequalities (3.17), (3.18) and (3.19), together with the structure of ξ − x̂∗1, imply

that (3.16) holds, so we can conclude that x1(k + 1) = x̂?1. A symmetric argument

shows that x2(k + 1) = x̂?2.

To complete the proof it remains to show that zi(k + 1)>(ξ − x̂?j) ≥ 0 for all

ξ ∈ Xj, for all i, j = 1, 2, where zi(k + 1) = 1
2

(
z1(k) + z2(k)

)
+ ∇fi(xi(k)), due

to (3.2a) and our choice for A. By our induction hypothesis, zi(k)(ξ− x̂?j) ≥ 0, for all

i, j = 1, 2, hence it suffices to show that∇fi(xi(k))>(ξ−x̂?j) ≥ 0, ∀ξ ∈ Xj, ∀i = 1, 2.

Since xi(k) = x̂?i for i = 1, 2, due to our induction hypothesis, the claim follows

from (3.10) and (3.11), thus concluding the proof.

3.6.4 Auxiliary Lemmas for the proofs of Theorem 2 and 3.

Let

v(k) = 1
m

m∑
i=1

xi(k), (3.20)

be the average of the agents’ estimates at time k. Since this quantity might not

necessarily belong to the feasible set ∩mi=1Xi, we define

v̄(k) = ρ

ε(k) + ρ
v(k) + ε(k)

ε(k) + ρ
x̄, (3.21)
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where x̄ is a point in the interior of the feasible set (which is non-empty by

Assumption 1, item ii)), ρ > 0 is such that the 2-norm ball of centre x̄ and

radius ρ is contained in ∩mi=1Xi, and ε(k) = ∑m
i=1 dist(v(k), Xi). As shown in [103],

v̄(k) ∈ ∩mi=1Xi, for all k ∈ N. We also define ei(k + 1) = xi(k + 1) − zi(k), and

note that the zi-update in Algorithm 1 can be written as

xi(k + 1) =
m∑
j=1

aji(k)xj(k) + ei(k + 1). (3.22)

Lemma 3. The following relations hold.

i) Let (xi(k))k∈N, i = 1, . . . ,m, be the sequences generated by Algorithm 1, and

(v(k))k∈N and (v̄(k))k∈N defined by (3.20) and (3.21), respectively. Under

Assumption 1, we have that for all k ≥ 0,
m∑
i=1
‖xi(k + 1)− v̄(k)‖2 ≤ µ

m∑
i=1
‖xi(k)− v(k)‖2,

where µ = 2
ρ
mD + 1, and D is the diameter of the set ∪mi=1Xi (which is

well-defined by Lemma 1, item i)).

ii) Let (xi(k))k∈N, i = 1, . . . ,m, and (v(k))k∈N be as in item i). Under Assump-

tion 2, we have that for all i = 1, . . . ,m, for all k ≥ 0,

‖xi(k + 1)− v(k + 1)‖2 ≤ λqk
m∑
j=1
‖xj(0)‖2 + ‖ei(k + 1)‖2+

k−1∑
r=0

λqk−r−1
m∑
j=1
‖ej(r + 1)‖2 + 1

m

m∑
j=1
‖ej(k + 1)‖2,

where λ = 2(1 + η−(m−1)T )/(1− η(m−1)T ) ∈ R+ and q = (1− η(m−1)T )
1

(m−1)T ∈

(0, 1).

iii) Given a non-increasing and non-negative sequence (c(k))k∈N, and a scalar

L̄ > 0, we have that

2L̄
N∑
k=0

c(k)
m∑
i=1
‖xi(k + 1)− v̄(k + 1)‖2

< β1

N∑
k=0

m∑
i=1
‖ei(k + 1)‖2

2 + β2

N∑
k=0

c(k)2 + β3,

where β1 ∈ (0, 1), and β2 and β3 are positive constants.
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Proof. The proof of item i) is presented in [92, Lemma 1]. For item ii), see [92,

Lemma 2]. Finally, the proof of item iii) follows the line of [92, Lemma 3]. We

highlight that constants β1, β2, and β3 depend on the parameter µ defined in item

i). Their exact expressions can be found in [92], equation (35).

Observe that the values of λ and q in Lemma 3, item ii), depend on the

parameter T that characterises the uniform bound in Assumption 2, item i); and

on η, the lower bound for the elements of A(k), Assumption 2, item ii). The

following lemma is instrumental for the proof of Theorem 3. In particular, Lemma 4,

item ii), constitutes a non-trivial extension of the result in [92], allowing some

sequences to be iteration-varying.

Lemma 4. Let (xi(k))k∈N, (zi(k))k∈N and (di(k))k∈N, i = 1, . . . ,m, be the sequences

generated by Algorithm 1, and x? by any optimal solution of (3.1). Under Assump-

tions 1 and 2, we have that:

i) For all k ∈ N,

2c(k)
m∑
i=1

di(k)>(xi(k + 1)− x?) +
m∑
i=1
‖ei(k + 1)‖2

2

+
m∑
i=1
‖xi(k + 1)− x?‖2

2 ≤
m∑
i=1
‖xi(k)− x?‖2

2. (3.23)

ii) For any β1 ∈ (0, 1), there exist sequences (α1(k))k∈N and (α2(k))k∈N such that,

for all k ∈ N, α1(k) ∈ (0, 1), α2(k) ∈ (0, 1), 1− β1 − α1(k)− α2(k) ≥ 0 and

2
N∑
k=0

c(k)
m∑
i=1

(fi(v̄(k + 1))− fi(x?)) +
N∑
k=0

m∑
i=1
‖xi(k + 1)− x?‖2

2

+
N∑
k=0

(1− α1(k)− α2(k)− β1)
m∑
i=1
‖ei(k + 1)‖2

2 ≤
N∑
k=0

m∑
i=1
‖xi(k)− x?‖2

2

+
N∑
k=0

(
mL2α1(k) + α2(k)

α1(k)α2(k) + β2

)
c(k)2 + β3.

(3.24)
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Proof. Item i): Fix any i ∈ {1, . . . ,m} and consider the sequence (xi(k))k∈N. By

optimality of xi(k + 1) (see Algorithm 1), for any ξ ∈ Xi,

di(k)>xi(k + 1)− 1
c(k)(zi(k)− xi(k + 1))>xi(k + 1)

≤ di(k)>ξ − 1
c(k)(zi(k)− xi(k + 1))>ξ, (3.25)

where di(k)− 1
c(k)(zi(k)−xi(k+1)) constitutes the gradient of the objective function

in the xi−update of Algorithm 1, evaluated at xi(k + 1). Fix any optimal solution

of (3.1), x? ∈ ∩mi=1Xi, and consider the following identity

− 1
c(k)(zi(k)− xi(k + 1))>(xi(k + 1)− x?)

= 1
2c(k)‖xi(k + 1)− zi(k)‖2

2 + 1
2c(k)‖xi(k + 1)− x?‖2

2 −
1

2c(k)‖zi(k)− x?‖2
2.

(3.26)

Combining (3.26) and (3.25) with ξ = x?, we obtain

di(k)>xi(k + 1) + 1
2c(k)‖xi(k + 1)− zi(k)‖2

2 + 1
2c(k)‖xi(k + 1)− x?‖2

2

≤ di(k)>x? + 1
2c(k)‖zi(k)− x?‖2

2

≤ di(k)>x? + 1
2c(k)

m∑
j=1

aji(k)‖xj(k)− x?‖2
2, (3.27)

where the last inequality follows from double stochasticity of A(k) and convexity

of ‖ · ‖2. We now multiply both sides of (3.27) by 2c(k) and sum the result for all

i = 1, . . . ,m, to obtain

2c(k)
m∑
i=1

di(k)>xi(k + 1) +
m∑
i=1
‖xi(k + 1)− zi(k)‖2

2 +
m∑
i=1
‖xi(k + 1)− x?‖2

2

≤ 2c(k)
m∑
i=1

di(k)>x? +
m∑
i=1
‖xi(k)− x?‖2

2, (3.28)

where∑m
i=1

∑m
j=1 aji(k)‖xj(k)−x?‖2

2 = ∑m
i=1 ‖xi(k)−x?‖2

2 by exchanging the order of

summation, and due to double stochasticity of A(k). The result follows from (3.28)

by recalling that e(k + 1) = xi(k + 1) − zi(k) and moving the first term in the

right-hand side of (3.28) to the left one. This concludes the proof of item i).
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Item ii): Consider the first term in the left-hand side of (3.23), and rewrite it as

2c(k)
m∑
i=1

di(k)>(xi(k + 1)− x?) = 2c(k)
m∑
i=1

di(k)>(xi(k + 1)− v̄(k + 1))

+ 2c(k)
m∑
i=1

di(k)>(v̄(k + 1)− x?) (3.29)

by adding and subtracting v̄(k + 1). We next consider the terms in the right

hand-side of (3.29) separately. First, observe that

2c(k)
m∑
i=1

di(k)>(xi(k + 1)− v̄(k + 1)) ≥ −2c(k)L
m∑
i=1
‖xi(k + 1)− v̄(k + 1)‖2,

(3.30)

by the Cauchy-Schuwarz inequality, where L = maxξ∈∪m
i=1Xj

‖gj(ξ)‖2, which is well-

defined due to Lemma 1. Using the definition of di(k) – see Algorithm 1 – into

the second term in the right-hand side of (3.29), we then have that (via double

stochasticity of A)

2c(k)
m∑
i=1

di(k)>(v̄(k + 1)− x?) = 2c(k)
m∑
i=1

gi(zi(k))>(v̄(k + 1)− x?). (3.31)

Moreover, by adding and subtracting xi(k + 1) and zi(k) for all i = 1, . . . ,m, into

the right-hand side of (3.31) we obtain

2c(k)
m∑
i=1

gi(zi(k))>(v̄(k + 1)− x?) = 2c(k)
m∑
i=1

gi(zi(k))>(v̄(k + 1)− xi(k + 1))

+2c(k)
m∑
i=1

gi(zi(k))>(xi(k + 1)− zi(k)) + 2c(k)
m∑
i=1

gi(zi(k))>(zi(k)− x?).

(3.32)

Consider now the right-hand side of (3.32). The left-most term can be lower-bounded

as

2c(k)
m∑
i=1

gi(zi(k))>(v̄(k + 1)− xi(k + 1))

≥ −2c(k)L
m∑
i=1
‖v̄(k + 1))− xi(k + 1)‖2, (3.33)

by the Cauchy-Schuwarz inequality. As for the middle term, we have that

2c(k)
m∑
i=1

gi(zi(k))>(xi(k + 1)− zi(k)) ≥ −2c(k)L
m∑
i=1
‖ei(k + 1)‖2

≥ −α1(k)
m∑
i=1
‖ei(k + 1)‖2

2 −m
L2

α1(k)c(k)2 (3.34)
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where the first inequality follows from the Cauchy-Schuwarz inequality and the

definition ei(k) in (3.22). For the second inequality, we employed the relation 2xy ≤

x2 + y2 with x = L√
α1(k)

c(k) and y =
√
α1(k)‖ei(k + 1)‖2 for some α1(k) ∈ (0, 1),

k ∈ N.

Similarly, the right-most term of (3.32) can be manipulated to yield

2c(k)
m∑
i=1

gi(zi(k))>(zi(k)− x?) ≥ 2c(k)
m∑
i=1

(
fi(zi(k))− fi(x?)

)

= 2c(k)
m∑
i=1

(
fi(zi(k))− fi(v̄(k + 1))

)
+ 2c(k)

m∑
i=1

(
fi(v̄(k + 1))− fi(x?)

)
(3.35)

where the inequality follows from the definition of the subgradient for a convex

function, and the equality by adding and subtracting fi(v̄(k + 1)). The first term

in the right-hand side of (3.35) can be lower bounded as

2c(k)
m∑
i=1

(
fi(zi(k))− fi(v̄(k + 1))

)
≥ −2c(k)L

m∑
i=1
‖zi(k)− v̄(k + 1)‖2

≥ −2c(k)L
(

m∑
i=1

(‖ei(k + 1)‖2 + ‖xi(k + 1)− v̄(k + 1)‖2)
)

≥ −α2(k)
m∑
i=1
‖ei(k + 1)‖2

2 −m
L2

α2(k)c(k)2

− 2c(k)L
m∑
i=1
‖xi(k + 1)− v̄(k + 1)‖2 (3.36)

where the first inequality follows from the relation x ≥ −|x|, for all x ∈ R, and

from item iii) of Lemma 1, and the second inequality by adding and subtracting

xi(k+1), for all i = 1, . . . ,m, and then using triangle inequality. The last inequality

follows from 2xy ≤ x2 + y2 with x = L√
α2(k)

c(k) and y =
√
α2(k)‖ei(k + 1)‖2 for

some α2(k) ∈ (0, 1), k ∈ N. Substituting (3.36) into (3.35)

2c(k)
m∑
i=1

gi(zi(k))>(zi(k)− x?) ≥ −α2(k)
m∑
i=1
‖ei(k + 1)‖2

2 −m
L2

α2(k)c(k)2

− 2c(k)L
m∑
i=1
‖xi(k + 1)− v̄(k + 1)‖2 + 2c(k)

m∑
i=1

(
fi(v̄(k + 1))− fi(x?)

)
. (3.37)
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Substituting (3.29), (3.30), (3.33), (3.34), (3.37) into (3.23)

2c(k)
m∑
i=1

(fi(v̄(k + 1))− fi(x?)) +
(

1− α1(k)− α2(k)
) m∑
i=1
‖ei(k + 1)‖2

2

m∑
i=1
‖xi(k + 1)− x?‖2

2+ ≤
m∑
i=1
‖xi(k)− x?‖2

2 +mL2
(
α1(k) + α2(k)
α1(k)α2(k)

)
c(k)2

+ 6c(k)L
m∑
i=1
‖xi(k + 1)− v̄(k + 1)‖2. (3.38)

Summing (3.38) from k = 0 to k = N , and using Lemma 4, item iii), with L̄ = 3L,

the desired inequality (3.24) follows. This concludes the proof of item ii).

Note that for any β1 ∈ (0, 1), the sequences (α1(k))k∈N and (α2(k))k∈N can be

chosen to guarantee that 1 − α1(k) − α2(k) − β1 ≥ 0 for all k ∈ N. For instance,

one particular choice is α1(k) = α2(k) = α with 1− β1 − 2α > 0. Three immediate

consequences of Lemma 4 are presented in the following proposition.

Proposition 6. Consider Assumptions 1–3. The following statements hold

i) We have that ∑∞k=0
∑m
i=1 ‖ei(k)‖2

2 <∞;

ii) For all i = 1, . . . ,m, we have that limk→∞ ‖ei(k)‖2 = 0;

iii) For all i = 1, . . . ,m, limk→∞ ‖xi(k)− v(k)‖2 = 0.

Proof. Item i): Consider Lemma 4, item ii). Note that ∑N
k=0

∑m
i=1 ‖xi(k+ 1)−x?‖2

and ∑N
k=0

∑m
i=1 ‖xi(k) − x?‖2 form a telescopic series, so they can be replaced by∑m

i=1 ‖xi(N + 1)− x?‖2 and ∑m
i=1 ‖xi(0)− x?‖2, respectively. Let β1 ∈ (0, 1), choose

α1(k) = α2(k) = α so that 1−2α−β1 > 0. Observe that∑m
i=1(fi(v̄(k+1))−fi(x?)) ≥

0 for all k ∈ N, due to optimality of x?, so this term can be dropped from (3.24).

Besides, we can also drop the term∑m
i=1 ‖xi(N+1)−x?‖2

2 ≥ 0 since it is non-negative

and appears in the left-hand side of (3.24). This yields

(1− 2α− β1)
N∑
k=0

m∑
i=1
‖ei(k + 1)‖2

2 ≤
m∑
i=1
‖xi(0)− x?‖2

2

+
mL2 2

α
+ β2

 N∑
k=0

c(k)2 + β3.
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Letting N →∞, we conclude that ∑∞k=0
∑m
i=1 ‖ei(k)‖2

2 is finite since the sequence

(c(k))k∈N is square-summable under Assumption 3 and the feasible set is compact.

This concludes the proof of item i).

Item ii): Follows directly from item i).

Item iii): This proof follows directly from the arguments presented in [92,

Proposition 3], and is omitted.

3.6.5 Proof of Theorem 2

We are now in a position to prove Theorem 2. To this end, we use the inequality (3.38)

and leverage on Lemma 3.4 in [12] to establish convergence of the sequences

(‖xi(k) − x?‖2)k∈N, i = 1, . . . ,m, to zero for some minimiser x? of (3.1). We

first present Lemma 3.4 in [12].

Lemma 5 ([12]). Consider non-negative scalar sequences (`(k))k∈N, (u(k))k∈N and

(ζ(k))k∈N that satisfy the recursion `(k+ 1) ≤ `(k)−u(k) + ζ(k). If ∑∞k=0 ζ(k) <∞,

then the sequence (`(k))k∈N converges and the sequence (u(k))k∈N is summable.

Consider inequality (3.38), and choose α1(k), α2(k) and β1 as in the proof of

Proposition 6 item i). We now drop the term involving (1−2α)∑m
i=1 ‖ei(k+1)‖2

2 as it

appears on the left-hand side of the inequality and is non-negative so that we obtain
m∑
i=1
‖xi(k + 1)− x?‖2

2 ≤
m∑
i=1
‖xi(k)− x?‖2

2 − 2c(k)
m∑
i=1

(fi(v̄(k + 1))− fi(x?))

+ 2mL2

α
c(k)2 + 6c(k)L

m∑
i=1
‖xi(k + 1)− v̄(k + 1)‖2. (3.39)

With reference to Lemma 5 and considering inequality (3.39), we set `(k) =∑m
i=1 ‖xi(k) − x?‖2

2, and

ζ(k) = 2mL2

α
c(k)2 + 6c(k)L

m∑
i=1
‖xi(k + 1)− v̄(k + 1)‖2,

u(k) = 2c(k)
(
f(v̄(k + 1))− f(x?)

)
. (3.40)

By Lemma 3, item iii), with L̄ = 3L, and by Proposition 6, item i), it follows

that 6L∑∞k=1 c(k)∑m
i=1 ‖xi(k + 1)− v̄(k + 1)‖ <∞, hence, ∑∞k=1 ζ(k) <∞, as c(k)



3. Subgradient averaging for multi-agent optimisation 59

is square-summable due to Assumption 3, which implies that the assumptions

of Lemma 5 hold.

Therefore, we have that the sequence (∑m
i=1 ‖xi(k)− x?‖2

2)k∈N converges, which

implies that (∑i ‖xi(k)−x?‖2)k∈N also converges. To see this, note that, by continuity

of the square-root function, (∑m
i=1 ‖xi(k)− x?‖2

2)k∈N being a convergent sequence

implies that (‖X(k) − x? ⊗ 1>‖F )k∈N also converges, where, for a fixed k ∈ N,

X(k) is a n×m matrix whose i-th column is given by xi(k), and ⊗ represents the

Kronecker product. Moreover, note that the set of n×m matrices can be equipped

with the norm ∑m
i=1 ‖xi‖2, where xi, i = 1, . . . ,m, is the i-th column of a generic

element X ∈ Rn×m. Since all norms in finite-dimensional spaces are equivalent, we

conclude that the sequence (∑m
i=1 ‖xi(k)− x?‖2)k∈N also converges. An alternative

but more tedious justification of this argument can be found in [92].

By Lemma 5, we also have that ∑∞k=1 c(k)
(
f(v̄(k + 1)) − f(x?)

)
< ∞. The

latter implies that lim infk→∞(f(v̄(k + 1)) − f(x?)) = 0. Therefore, there exists

a subsequence of (f(v̄(k + 1)) − f(x?))k∈N that converges to zero. Since the

function f(x) is continuous (by convexity) there exists some minimizer x? such

that a subsequence of (‖v̄(k) − x?‖2)k∈N converges to zero. Moreover, we obtain∑m
i=1 ‖xi(k) − x?‖2 ≤

∑m
i=1 ‖v̄(k) − x?‖2 + µ

∑m
i=1 ‖xi(k) − v(k)‖2. by adding and

subtracting v̄(k), then applying triangle inequality and invoking Lemma 3, item i).

Note that (‖v̄(k) − x?‖2)k∈N converges to zero across a subsequence and the

sequence (∑m
i=1 ‖xi(k)−v(k)‖2)k∈N converges to zero (due to Proposition 6, item iii))

hence we can find a subsequence of (∑m
i=1 ‖xi(k)− x?‖2)k∈N that converges to zero.

However, we have shown by means of Lemma 5 that the sequence (∑m
i=1 ‖xi(k)−

x?‖2)k∈N converges; as a result it should converge to zero since every Cauchy sequence

has a unique limit point. To conclude the proof, note that, for all k ∈ N and for all

j = 1, . . . ,m, ‖xj(k)−x?‖2 ≤
∑m
i=1 ‖xi(k)−x?‖2, so we conclude that the sequences

(‖xj(k)− x?‖2)k∈N, j = 1, . . . ,m, converge to zero. This concludes the proof.
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3.6.6 Proof of Theorem 3

Consider Assumption 4. We drop the constant η for simplicity of exposition, but

general choices η√
k+1 , η > 0, are also applicable. Let (v̂(k))k∈N be the running

average sequence associated with (v̄(k))k∈N (definition is analogous to (x̂i(k))k∈N
in (3.4)). Note that since ∩mi=1Xi is assumed to be convex, we have that v̂(k) is

feasible for all k ∈ N (see also the discussion below (3.21)). We have that∣∣∣∣∣
m∑
i=1

fi(x̂i(k + 1))− f(x?)
∣∣∣∣∣ ≤ f(v̂(k + 1))− f(x?)

+ L
m∑
i=1
‖x̂i(k + 1)− v̂(k + 1)‖2, (3.41)

which follows from triangle inequality and Lemma 1, item iii). Note that the first

term in the right-hand side of (3.41) does not involve an absolute value due to

feasibility of the sequence (v̂(k))k∈N, which in turn implies that f(v̂(k+ 1)) ≥ f(x?).

To facilitate subsequent statements, we change the notation in Lemma 4, item

ii), by replacing k by r, and N by k. The inequality with this modified notation

is repeated here for clarity. Indeed, we have that for all k ∈ N

2
k∑
r=0

c(r)
m∑
i=1

(fi(v̄(r + 1))− fi(x?)) +
k∑
r=0

(1− α1(r)− α2(r)− β1)
m∑
i=1
‖ei(r + 1)‖2

2

+
k∑
r=0

m∑
i=1
‖xi(r + 1)− x?‖2

2 ≤
k∑
r=0

m∑
i=1
‖xi(r)− x?‖2

2

+
k∑
r=0

(
mL2α1(r) + α2(r)

α1(r)α2(r) + β2

)
c(r)2 + β3,

(3.42)

where (α1(r))r∈N and (α2(r))r∈N are sequences such that 1− β1−α1(r)−α2(r) ≥ 0

for all r ∈ N.

The proofs of items i), ii) and iii) of Theorem 3 are intertwined and will be

composed into two parts: we first assume that there exist constants d1, d2, d3, d4 > 0

such that (3.43) and (3.44) bellow are satisfied, and on this basis prove the claims

of the theorem; we then return to (3.43) and (3.44), and prove the existence of
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such constants. To this end, consider

f(v̂(k + 1))− f(x?) ≤ d1
1

S(k + 1) + d2

∑k
r=0 c(r)2

S(k + 1) (3.43)

L
m∑
i=1
‖x̂i(k + 1)− v̂(k + 1)‖2 ≤

d3

S(k + 1) + d4

∑k
r=0 c(r)2

S(k + 1) . (3.44)

Note that S(k + 1) can be lower-bounded as

S(k + 1) =
k+1∑
r=1

1√
r + 1

≥
∫ k+3

2

1√
x
dx

= 2(
√
k + 3−

√
2) ≥ ν

√
k + 3 ≥ ν

√
k + 1, (3.45)

with ν = 2 −
√

2, and where we employed monotonicity of
√
x+3−

√
2√

x+1 for x ≥

1. Moreover, we have that
k∑
r=0

c(r)2 =
k∑
r=0

1
r + 1 =

k+1∑
r=1

1
r
≤
∫ k+1

1

1
x
dx+ 1 ≤ ln(k + 1) + 1. (3.46)

The result of the Theorem 3, item iii), follows then from (3.41) by substituting (3.43)–

(3.46), and setting B1 = ∑4
i=1

di

ν
and B2 = d2

ν
+ d4

ν
. Since (3.44) is valid for all

i = 1, . . . ,m, we have that (via a direct application of triangle inequality)

‖x̂i(k)− x̂j(k)‖2 ≤
m∑
i=1
‖x̂i(k)− v̂(k)‖+

m∑
i=1
‖x̂j(k)− v̂(k)‖,

which due to (3.45) and (3.46) then implies that the sequence (‖x̂i(k)− x̂j(k)‖2)k∈N
converges to zero at a rate O( ln k√

k
). This concludes the proof of item i).

Moreover, these relations also imply that the set of accumulation points of

the sequence (v̂(k))k∈N coincides to that of the sequences (x̂i(k))k∈N, i = 1, . . . ,m.

Hence, we conclude that all accumulation points of (x̂i(k))k∈N are feasible due to the

fact that all accumulation points of (v̂(k))k∈N are in ∩mi=1Xi and the latter is a closed

set, thus concluding the proof of item ii). This concludes the proof of Theorem 3.
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Derivation of (3.43)

We first construct an upper-bound for the term on the left-hand side of (3.43).

In fact, observe that

f(v̂(k + 1))− f(x?) = f

(
1

S(k + 1)

k+1∑
r=1

c(r)v̄(r)
)
− f(x?)

≤
k+1∑
r=1

c(r)
S(k + 1)f(v̄(r))− f(x?) =

k∑
r=0

c(r + 1)
S(k + 1)

m∑
i=1

(fi(v̄(r + 1))− fi(x?))

≤
k∑
r=0

c(r)
S(k + 1)

m∑
i=1

(fi(v̄(r + 1))− fi(x?)), (3.47)

where the first equality follows by definition of v̂(k + 1), the first inequality by

convexity of f , the second equality by using the fact that f = ∑m
i=1 fi and changing

the summation index, and the second inequality by using the fact that c(r + 1) =
1√
r+1 ≤

1√
r

= c(r) for all r ∈ N.

In light of (3.42), for any β1 ∈ (0, 1), a valid choice for the sequences (α1(k))k∈N
and (α2(k))k∈N is α1(k) = α2(k) = α(k), where α(k) = a

(
1 − 1√

k+1

)
; to ensure

that 1 − β1 − α1(k) − α2(k) ≥ 0 as required by Lemma 4, item ii), it suffices to

set a = (1 − β1)/2. Under these choices we have that

1− β1 − 2α(k) = 1− β1√
k + 1

= (1− β1)c(k). (3.48)

Consider now (3.42) with the above choices for α1(k) and α2(k). Note that the

series ∑k
r=0

∑m
i=1 ‖xi(r + 1)− x?‖2 and ∑k

r=0
∑m
i=1 ‖xi(r)− x?‖2 are telescopic, thus

all intermediate terms cancel. We now drop the terms involving ‖ei(r + 1)‖2
2

and ‖xi(k + 1) − x?‖2 as they are non-negative, and then divide the resulting

expression by 2S(k + 1) = 2∑k+1
r=1

1√
r+1 to obtain the following upper bound on

the right-hand side of (3.47)

k∑
r=0

c(r)
S(k + 1)

m∑
i=1

(fi(v̄(r + 1))− fi(x?)) ≤
∑m
i=1 ‖xi(0)− x?‖2

2
2S(k + 1) + β3

2S(k + 1)

+ β2

2

k∑
r=0

c(r)2

S(k + 1) +mL2 1
S(k + 1)

k∑
r=0

c(r)2

α(r) . (3.49)

By the right-hand side of (3.49), we obtain (3.43) with d1 = 4mD2+β3
2 , d2 =

β2
2 + 4mL2

a
. where, by Assumption 1, ∑m

i=1 ‖xi(0)− x?‖2
2 ≤ 4mD2, with D defined as
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in Lemma 3, item i). Moreover, we used the fact that c(r)2

α(r) = 1
a

√
r+1√
r+1−1

1
r+1 ≤

4
a
c(r)2,

due to monotonicity of
√
x+1√
x+1−1 .

Derivation of (3.44)

Similarly to the derivation of (3.43), we apply the definition of both x̂i(k), i =

1, . . . ,m, and v̂(k) to upper-bound the left-hand side of (3.44) as

L
m∑
i=1
‖x̂i(k + 1)− v̂(k + 1)‖2 = L

m∑
i=1

∥∥∥∥∥ 1
S(k + 1)

k+1∑
r=1

c(r)
(
xi(r)− v̄(r)

)∥∥∥∥∥
2

≤ Lµ

S(k + 1)

k+1∑
r=1

c(r)
m∑
i=1
‖xi(r)− v(r)‖2, (3.50)

where the inequality follows from convexity of the norm. We will now construct

an upper-bound on the right-hand side of (3.50). To this end, note that

Lµ

S(k + 1)

k+1∑
r=1

c(r)
m∑
i=1
‖xi(r)− v(r)‖2 = Lµc(1)

S(k + 1)

m∑
i=1
‖xi(1)− v(1)‖2

+ Lµ

S(k + 1)

k+1∑
r=2

c(r)
m∑
i=1
‖xi(r)− v(r)‖2. (3.51)

We now invoke Lemma 3, item ii) – with r in the place of k, and t in the place

of r – for the last term on the right-hand side of (3.51) so that
k+1∑
r=2

c(r)
m∑
i=1
‖xi(r)− v(r)‖2 =

k∑
r=1

c(r + 1)
m∑
i=1
‖xi(r + 1)− v(r + 1)‖2

≤ 2
k∑
r=0

c(r)
m∑
i=1
‖ei(r + 1)‖2 +mλ

m∑
i=1
‖xi(0)‖2

k∑
r=0

c(r)qr

+mλ
k∑
r=1

c(r + 1)
r−1∑
t=0

qr−t−1
m∑
i=1
‖ei(t+ 1)‖2, (3.52)

where we added the term corresponding to r = 0 and used the fact that c(r+1) ≤ c(r)

for all r ∈ N, in first two terms on the right-hand side of (3.52). We analyse each

term in the right-hand side of (3.52) separately. First, observe that

2
k∑
r=0

c(r)
m∑
i=1
‖ei(r + 1)‖2 ≤

k∑
r=0

c(r)2 +
m∑
i=1
‖ei(r + 1)‖2

2, (3.53)

using the identity 2xy ≤ x2 + y2. The intermediate term in the right-hand side

of (3.52) can be manipulated to yield

mλ
m∑
i=1
‖xi(0)‖2

k∑
r=0

c(r)qr ≤ m2λD

1− q , (3.54)
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since c(r) ≤ 1 for all r ∈ N ∪ {0}, ‖xi(0)‖2 ≤ D (Lemma 1) for all i = 1, . . . ,m,

and using the closed-form expression for the sum of geometric series as q ∈ (0, 1).

We deal with the last term in (3.52) in several steps. We start by expanding

the terms to obtain
k∑
r=1

c(r + 1)
r−1∑
t=0

qr−t−1
m∑
i=1
‖ei(t+ 1)‖2

= c(2)
m∑
i=1
‖ei(1)‖2 + c(3)

(
q
m∑
i=1
‖ei(1)‖2

m∑
i=1
‖ei(2)‖2

)

+ . . .+ c(k + 1)
(

k∑
t=1

qk−t
m∑
i=1
‖ei(t)‖2

)
. (3.55)

We now collect the terms containing the error vector ei(r), r = 1, . . . , k, to obtain

mλ
k∑
r=1

c(r + 1)
r−1∑
t=0

qr−t−1
m∑
i=1
‖ei(t+ 1)‖2 = mλ

m∑
i=1
‖ei(1)‖2

(
c(2) + qc(3) + . . .

+ qk−1c(k + 1)
)

+ . . .+
m∑
i=1
‖ei(k)‖2c(k + 1)

≤ mλ

1− q

k∑
r=1

c(r + 1)
m∑
i=1
‖ei(r)‖2 ≤

mλ

1− q

k∑
r=1

c(r)
m∑
i=1
‖ei(r)‖2

≤ mλ

2(1− q)

k∑
r=0

c(r)2 + mλ

2(1− q)

k∑
r=0

m∑
i=1
‖ei(r + 1)‖2

2 (3.56)

where in the first inequality we used the fact that q ≤ 1
1−q and 1 ≤ 1

1−q for any

q ∈ (0, 1), while in the second inequality we used the fact that c(r + 1) ≤ c(r).

To obtain the last inequality we applied the relation 2xy ≤ x2 + y2 with x = c(r)

and y = ‖ei(r + 1)‖2, and then added the non-negative terms involving c(0)2 and∑m
i=1 ‖ei(k + 1)‖2

2. Substituting (3.51)–(3.54) and (3.56) into (3.50) we have that

L
m∑
i=1
‖x̂i(k + 1)− v̂(k + 1)‖2 ≤ Lµ

(
1 + mλ

2(1− q)

) ∑k
r=0 c(r)2

S(k + 1)

+
mλ+ 2c(1)

 LµmD

S(k + 1) + Lµ

S(k + 1)

(
1 + mλ

2(1− q)

)
k∑
r=0

m∑
i=1
‖ei(r + 1)‖2

2. (3.57)

To obtain the result, we need to manipulate the last term in the right-hand side

of (3.57). To this end, we invoke (3.42) with the same β1 as in (3.48), but with

(α1(k))k∈N and (α2(k))k∈N such that α1(k) = α2(k) = α, for all k ∈ N, following
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the same rationale as in Proposition 6 to obtain
k∑
r=0

m∑
i=1
‖ei(r + 1)‖2

2 ≤
∑m
i=1 ‖x(0)− x?‖2

2 + β3

1− β1 − 2α + 1
1− β1 − 2α

(
mL2 2

α
+ β2

) k∑
r=0

c(r)2

≤ 4mD2 + β3

1− β1 − 2α + 1
1− β1 − 2α

(
mL2 2

α
+ β2

) k∑
r=0

c(r)2. (3.58)

Substituting (3.58) into (3.57) we obtain (3.44) with constants

d3 = Lµ

1 + mλ

2(1− q)

 4mD2 + β3

1− β1 − 2α +mD

mλ+ 2c(1)
,

d4 = Lµ

1 + mλ

2(1− q)

1 + 1
1− β1 − 2α

(
mL2 2

α
+ β2

),
thus concluding the proof of Theorem 3.
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4
Distributed actuator selection

In this chapter, we address a combinatorial optimisation problem, namely, the

distributed actuator selection problem. As stated in Chapter 1, the main issue

associated with such a problem is the presence of integer decision variables. We

study a specific formulation of the problem that can be solved exactly by means of a

convex relaxation and show how multi-agent optimisation schemes as the one studied

in Chapter 3 can be employed to produce a solution to the corresponding relaxation.

4.1 Introduction

In the past few years, an active stream of research within the control community has

been understanding and regulating complex networks with applications to health

care, neuroscience, and social networks [76]. However, achieving an implementable

solution in the aforementioned areas requires scalability and reliability.

One important problem arising from the study of large-scale complex networks is

that of actuator and sensor selection/placement. The former aims to choose ν from

m potential actuator positions to minimise some objective function, e.g., H2 norm

or controllability-related metrics, while the latter addresses a similar situation by

deciding on ν sensors to minimise metrics related to estimation error. These problems
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have been extensively studied in the literature, ranging from applications in power

systems [54] to the satellite assignment problem [119] and wireless networks [61].

Being combinatorial problems, actuator and sensor placement do not have, in

general, efficient algorithms to determine their corresponding optimal solutions.

The straightforward, albeit very commonly used, approach of enumerating all

possible selections, and choosing the best one according to a given metric becomes

intractable for high values of m. Even listing all possible alternatives requires shared

information that in several applications might be considered as private.

An alternative approach is, instead of obtaining the optimal solution, to rely

on algorithms that possess guaranteed sub-optimality bounds, for instance, the

greedy algorithm applied to submodular functions [73], [89], [104]. Such algorithms

have been successfully applied to the actuator and sensor selection problems [39],

[65], [74], [139]. Furthermore, one can also sub-optimally solve the actuator and

sensor placement problem using convex relaxations [45], [54], [68], [116], however,

without a priori guaranteed sub-optimality bounds.

Within this context, this chapter aims to study the actuator selection problem

using the trace of the controllability gramian as an optimisation metric. Under

this metric and asymptotic stability of the dynamics, we show that the actuator

placement problem can be equivalently posed as an Integer Linear Program (ILP).

Using properties of integral polyhedra, we show through a sequence of reformulations

that the optimal solution of this problem can be determined by means of a Linear

Program (LP) without introducing any relaxation gap. This allows us to exploit

recent results in the literature [48], and to determine the optimal solution by means

of a primal-dual distributed algorithm, thus providing a scalable approach to the

problem of actuator placement which has been up to now performed on a centralised

manner enumerating all possible placement alternatives.

Deviating from recent attempts in the literature, we recognize the combinatorial

nature of the problem but do not rely on submodularity properties of set functions,

as in [65], [139], [140]. Our standpoint is closer to [68] since we use convex relaxations

to study the problem. However, [68] focuses on different optimisation metrics and
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provides a sub-optimal solution to the problem. In contrast, this chapter adopts

a particular, in some sense simpler, optimisation metric, but obtains stronger

results, showing that the optimal solution of the actuator selection problem can

be obtained by means of a linear program. The modularity of the metric used

opens the road for a distributed algorithmic implementation which is of particular

interest in large-scale complex networks.

The remainder of this chapter is organized as follows. Section 4.2 states the

actuator selection problem under study, presents an equivalent ILP formulation,

and provides an interpretation about the optimisation metric used in this chapter.

In Section 4.3 we introduce some background notions based on the properties of

integral polyhedra and show that the optimal solution of the ILP can be obtained

by means of a LP. We also introduce two algorithms, one decentralised (based on

dual decomposition) and one distributed, that generate optimal solutions for the

problem under study. In Section 4.4 we illustrate the efficacy of our approach by

means of a case study involving a simplified model of the European power grid.

In Section4.5 we review the main results of this chapter.

4.2 The actuator selection problem

4.2.1 Problem Statement

We consider the actuator selection problem using the trace of the controllability

gramian as the optimisation metric. To this end, let m denote the number of

possible actuators and S ⊂ {1, . . . ,m}, with |S| = ν, and consider

ẋ(t) = Ax(t) +BSuS(t), (4.1)

where A ∈ Rn×n is a matrix that represents the dynamics of the system and

BS ∈ Rn×ν the input matrix associated with the subset S. The state of this system

is denoted by x(t) ∈ Rn and u(t) ∈ Rν is the input. The objective is to choose a

subset S of cardinality ν to maximise the trace of the controllability gramian, i.e.,

maximise
S⊂{1,...,m}, |S|=ν

tr(WS), (4.2)
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where AWS + WSA
> + BSB

>
S = 0.

We impose the following standing assumption on the matrix A that describes

the system’s dynamics.

Assumption 6. Matrix A is Hurwitz, i.e., its eigenvalues have negative real part.

Note that, similar to [68], we can reformulate problem (4.2) as the Boolean-

convex problem

maximise
W,z

tr(W )

subject to AW +WA> +
m∑
i=1

ziBiB
>
i = 0

1>z = ν, zi ∈ {0, 1} , ∀ i = 1, . . . ,m,

(4.3)

by associating decision variables zi, i = 1, . . . ,m, to each actuator, where 1 Bi,

i = 1, . . . ,m, is a column vector associated with each possible actuator. In the

particular case where each actuator is connected to only one state we have Bi = ei,

for i = 1, . . . ,m, where ei is the standard unit vector. The symbol 1 stands

for the vector of ones in Rm.

Problem (4.3) can be simplified if we solve the Lyapunov equation. We can

thus obtain the equivalent ILP formulation:

minimise
z∈{0,1}m

m∑
i=1

cizi

subject to 1>z = ν

(4.4)

where ci = −tr(Wi), AWi + WiA
> + BiB

>
i = 0. Note that equivalence follows

from uniqueness of the solution to the Lyapunov equation, which is guaranteed

by Assumption 6, while ci, i = 1, . . . ,m, can be computed in parallel for each

actuator position.

We could formulate problem (4.4) as one of minimising a modular function

over a cardinality constraint in the set of feasible solutions, which would reduce

the search for the optimal solution of (4.4) to a simple sorting problem. For
1For a total of m possible actuators, let B be a n×m matrix having Bi, i = 1, . . . ,m, as its

columns. In our notation, BS represents a n× ν matrix that has a Bi, i = 1, . . . ,m, as one of its
columns if and only if i ∈ S, i.e., BS represents a selection of the columns of B according to a
subset S ⊂ {1, . . . ,m} of cardinality ν.
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M ⊂ R, submodular function is a set function f : 2M → R with the property

that f(S ∪ {i}) − f(S) ≥ f(S ∪ {i, j}) − f(S ∪ {j}), ∀S ⊂ M \ {i, j}. Intuitively,

submodular functions have a diminishing return property, that is, the contribution

of adding an element i deteriorates when the number of elements in S increases.

Modular functions satisfy the previous inequality with equality. The study of

combinatorial problems using modular and submodular functions has been the

main subject in the recent literature [65], [73], [74], [139], especially because of

guaranteed sub-optimal bounds of the greedy algorithm [89], [104].

Even though, in principle, the solution to (4.4) can be easily computed, this

is not the case when m is large. Besides, privacy issues may also be a concern

since some actuators may not be willing to share private data, e.g., the cost vector

ci. In this case, one could search for the optimal solution of the problem using

distributed optimisation [11] as studied in Chapter 3.

4.2.2 Optimisation metric interpretation

We provide an interpretation of our choice for the optimisation metric. To this

end, note that maximising the trace of the controllability gramian results in

maximising the sum of its eigenvalues, which can be thought of as a proxy for average

controllability [50], [139]. At the same time, considering full state access, tr(WS)

coincides with the H2 norm of (4.1). Therefore, by solving (4.2) we are maximising

the energy of the impulse response of all possible actuator placement alternatives

under the hypothesis of full-state measurement. This conclusion complies with the

physical interpretation presented in [81] (see also [112], [139] for further details).

4.3 Distributed implementation

4.3.1 ILP background

Let us consider the following ILP

minimise
z∈Zn

+

m∑
i=1

c>i zi

subject to
m∑
i=1

Hizi ≤ g,

(4.5)
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where z = [z>1 . . . z>m], with zi ∈ Zni
+ , ∑m

i=1 ni = n, is the decision variable, g ∈ Zp is

the resource vector, and ∑m
i=1Hizi ≤ g is the coupling constraint, where Hi ∈ Zp×ni

– observe that ni = 1 for all i = 1, . . . ,m in formulation (4.4), which implies n = m.

Instances of problem (4.5) include, but are not limited to the knapsack and set

covering problems [16]. Note that for the results of this subsection we allow zi,

i = 1, . . . ,m, to be positive integer-valued but not necessarily binary as in (4.4).

A non-negative integer vector z is a feasible solution of (4.5) if it satisfies the

coupling constraint. The set of all feasible solutions is called the feasible set, and if

non-empty, (4.5) is said to be feasible. We define the set of optimal solutions as

the subset of the feasible set such that the value of the objective function is less

than or equal to the value of any other vector in the feasible set.

In general, solving an ILP problem is hard because of the difficulty in charac-

terizing the convex hull of the feasible set in terms of polyhedral inequalities [16].

In this direction, [49], [149] provide upper bounds on the difference between the

optimal solution of (4.5) and its convex relaxation by tightening the resource vector

g. However, in some special cases, we can produce a convex relaxation that is exact,

i.e., its optimal solution produces an optimal solution for (4.5). For instance, the

celebrated Birkhoff-von Neumann theorem [10] states that the extreme points of the

set of doubly stochastic matrices are permutation matrices. Using this theorem one

can solve the assignment problem, where we have m objects to assign to m people

and aim to find the allocation with minimum cost. Note that the optimal solution

for this problem is a permutation matrix, and it is often known as allocation in

merit order. The Birkhoff-von Neumann theorem provides a way to produce an

optimal solution by minimising over the set of doubly stochastic matrices instead

of using the integer formulation with permutation matrices.

Towards this direction, integral polyhedra possess important properties that

allow solving an ILP up to optimality by means of its convex relaxation.

Definition 16. A polyhedral set P in Rm is integral when all the extreme points of

P have integer components.
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The intuition behind Definition 16 is that a linear function that is bounded

over P attains its minimum at some vertex of P [10, Chapter 2, Prop. 2.4.2]. We

are implicitly assuming that P has at least one vertex, which is the case if and

only if P does not contain a line [10, Chapter 2, Prop. 2.1.2]. A related definition

in this context is the notion of total unimodularity.

Definition 17. Matrix H ∈ Zp×m is totally unimodular if the determinant of each

submatrix is either 0, 1, or −1.

The following result, whose proof is given in [16, Corollary 3.1], relates Def-

initions 16 and 17.

Lemma 6. The polyhedron P = {x ∈ Rm
+ |Hx ≤ g, 0 ≤ x ≤ u} is integral if and

only if H is totally unimodular.

Note that, similar to the Birkhoff-von Neumann theorem, Lemma 6 provides

mechanisms to exactly solve an ILP through its convex relaxation. Indeed, as an

immediate consequence of Lemma 6, we can argue that whenever matrix

H =
[
H1, . . . , Hm

]
(4.6)

is totally unimodular the optimal solution of problem (4.5) is equal to the optimal

solution of its convex relaxation (i.e., considering z ∈ Rm
+ ).

4.3.2 Convex reformulation

Building on the results of Section 4.3.1, we now focus on the actuator selection

formulation given by (4.4) and consider its convex relaxation

minimise
0≤zi≤1, ∀i=1,...,m

m∑
i=1

cizi

subject to 1>z = ν

(4.7)

Proposition 7. The feasible set of (4.4) coincides with extreme points of the

polyhedron

P =
{
z ∈ Rm|1>z = ν, 0 ≤ zi ≤ 1, ∀i = 1, . . . ,m

}
,

i.e., the set of feasible solutions of (4.7), for all ν ∈ Z+.
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Proof. First, note that P does not contain a line since 0 ≤ zi ≤ 1 for all i = 1, . . . ,m,

hence it has at least one extreme point. Then, define H as in (4.6) with

Hi =
[

1
−1

]
, ∀i = 1, . . . ,m, and g =

[
ν
−ν

]
. (4.8)

Now, let Ĥ be a square submatrix of H. We have two possible cases: Ĥ has

dimension 1 or 2. In the former case, note that either Ĥ = 1 or Ĥ = −1, which

trivially satisfies det(Ĥ) = ±1, where det(A) denotes the determinant of A. In the

latter case, observe that every 2× 2 submatrix has determinant zero. Therefore, by

Definition 16, H is totally unimodular. The result follows directly from Lemma 6,

thus concluding the proof.

4.3.3 Primal-Dual algorithms

Proposition 7 shows that an optimal solution of (4.4) can be recovered by means

of (4.7). However, the latter is a linear program. In this section we exploit this

fact, and provide a decentralised and a distributed algorithm to obtain its optimal

solution. To this end, we equivalently represent the constraints of (4.7) as Hz ≤ g,

where H and g are given by (4.8). The corresponding dual problem is given by

maximise
λ≥0

− λ>g +
m∑
i=1

min
0≤zi≤1

(ci + λ>Hi)zi (4.9)

The minimisation step required to evaluate the dual function can be performed in

parallel for each i = 1, . . . ,m, making this formulation amenable to decomposition

algorithms. Second, we have zero duality gap between problems (4.9) and (4.7)

(by strong duality arguments in linear programming), which in turn provides an

optimal solution for its integer formulation given in (4.4).

One way to solve problem (4.9) is to use dual ascent methods, which are encoded

by
zi(k + 1) ∈ argmin

0≤z≤1
(ci + (λ(k))>Hi)z, i = 1, . . . ,m

λ(k + 1) ∈
λ(k) + α(k)

( m∑
i=1

Hizi(k + 1)− g
)

+

,
(4.10)
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where [·]+ represents the projection of its argument on the positive orthant. Typical

choices for the time-varying step-size are α(k) = β/(k+ 1) or α(k) = β/
√
k + 1, for

some β > 0. As shown in [9], with either choice for α(k), the sequence generated

in (4.10) converges to the set of optimal solutions of (4.9).

Notwithstanding the progress made from the centralised problem (4.7) to the

decentralised Algorithm (4.10), this approach still has some drawbacks. At each

iteration, the dual variable λ needs to be broadcast in order to perform the

next primal update, which must be sent to the central processor that performs

the dual update.

To alleviate the centralised dual update step we introduce a time-varying

communication network with edge weights aij(k), where aij(k) = 0 implies that

node j does not share information with node i at iteration k. Similarly as in

Chapter 3, we impose the following assumptions on the matrix A(k), whose entries

are given by the elements aij(k), i, j ∈ {1, . . . ,m}.

Assumption 7. We assume that:

i) The graph (N , E∞) is strongly connected. Moreover, there exits a uniform

upper bound on the communication time for all (j, i) ∈ E∞.

ii) There exists τ ∈ (0, 1) such that for all k ∈ N and for all i, j = 1, . . . ,m,

aii(k) ≥ τ , and if aji(k) > 0 then we have that aji(k) ≥ τ .

iii) Matrix A(k) is doubly stochastic.

We are now in a position to present Algorithm 2, which was proposed in [48], and

in contrast to (4.10) offers a distributed implementation. We will henceforth refer to

each node i, i = 1, . . . ,m, as agent, which interacts with other agents according to

the aforementioned communication protocol. By Algorithm 2, each agent calculates

a weighted sum of the dual variables that were calculated by neighbouring agents

according to the underlying communication structure at the previous iteration (Step

6) to update its own dual variable (Step 8), eliminating the need for a central
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Algorithm 2 Distributed algorithm of [48]
Require: : g,Hi, ci, ∀i = 1, . . . ,m
1: z0

i ∈ [0, 1], ∀i = 1, . . . ,m
2: λ0

i = 0, ∀i = 1, . . . ,m
3: k = 0
4: while convergence is not achieved do
5: for i = 1 to m do
6: `i(k) = ∑m

j=1 aij(k)λj(k)
7: zi(k + 1) ∈ argmin0≤z≤1(ci + (`i(k))>Hi)z
8: λi(k + 1) ∈ [`i(k) + α(k)

(
Hizi(k + 1)− g

m

)
]+

9: ẑ(k + 1)i = ẑi(k) + α(k)∑k

r=1 α(k)
(zi(k)− ẑi(k))

10: end for
11: k ← k + 1
12: end while

agent to perform the dual update. Additionally, observe that variable α(k) is a

time-varying step size, with the following property.

Assumption 8 (Time-varying step size). The sequence (α(k))k≥0 is non-increasing,

positive, ∑∞k=1 α(k) =∞, and ∑∞k=1(α(k))2 <∞.

A common choice for the time-varying step is α(k) = β
k+1 , for some β > 0.

Assumptions 7 and 8 are essential for the convergence proof (see [48] for details).

Note that in both Algorithms 2 and (4.10) the primal update is performed

by the following “if-else” clause

zi(ζ) = argmin
0≤z≤1

(ci + ζ>Hi)z =
{

1, ci + ζ>Hi ≤ 0,
0, otherwise,

where ζ = λ(k) in (4.10) and ζ = `i(k) in Algorithm 2. As a consequence, Step 7 in

Algorithm 2 and the primal update in (4.10) is computationally inexpensive.

Under assumptions 7 and 8, it is shown in [48] that limk→∞ dist(ẑ(k), Z?) is equal

to zero, where ẑ(k) is the sequence generated by Algorithm 2, Z? is the set of optimal

solution of (4.7) and dist(x,X) is the distance between the point x and the set X.

Theorem 4. Consider the actuator selection formulation given by (4.2) and suppose

Assumptions 7 and 8 hold. Then the sequence ẑ(k) generated by Algorithm 2 produces

the optimal objective value for (4.2).
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Proof. By the proof of Theorem 2 in [48] the sequence (ẑ(k))k≥0 converges to the set

of optimal solutions of (4.7), which, through Proposition 7, implies that the optimal

objective function values of (4.7) and (4.4) coincide. However, by the equivalence

between (4.4) and (4.2) (see Section 4.2) the result follows.

The proof of Theorem 4 relies on several equivalences. These can be summarised

as

(4.2) ?⇐⇒ (4.4) Prop. 7⇐⇒ (4.7) #⇐⇒ (4.9).

The left-hand side equivalence (?) stands for the formulation of the actuator selection

problem as an ILP through the steps presented in Section 4.2. Some ideas used in

this process appear in [68], [140], but the last step where we convert into an ILP had

not been explored in the literature. The right-hand side equivalence (#) is due to

linear programming strong duality (see [11], [48]). The intermediate, instrumental

equivalence result, was established by means of Proposition 7.

Under uniqueness2 of the solution of (4.7), we can strengthen the result of Theo-

rem 4.

Corollary 1. Assume (4.7) admits a unique solution and let ξ = limk→∞ ẑ(k). We

then have that the optimal solution S? of (4.2) is given by S? = {i|ξi = 1}.

Proof. According to Theorem 4, the optimal values of (4.7) and (4.2) are the same.

Since the solution of (4.7) is unique, we know that ξ = limk→∞ ẑ(k) is well-defined

and, in addition, it is an extreme point of the set of feasible solutions of (4.7) (by

Proposition 7). Hence, it is a feasible solution for (4.2). Due to Theorem 4 it is

also optimal since ξ will achieve the optimal value of (4.7). By the equivalence

of (4.7) and (4.2), S? constitutes the optimal solution of (4.2), thus concluding the

proof.

Remark 2. One can prove that a similar result holds for the decentralised algorithm

in (4.10), namely, at the limit, the sequence z(k) generated by (4.10) converges in
2Even without uniqueness of the solution of (4.7) we can always produce an optimal solution

for (4.2), however, this solution would differ according to the iteration index (corresponding to
practical convergence) where Algorithm 1 or iteration (9) is terminated.
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terms of value to the optimal value of (4.2). For the sake of brevity, we do not

present the proof here, however, it follows from the proof of Theorem 4 by setting

the weights in Assumption 7 to be iteration invariant, and all of them equal to 1/m.

Moreover, it is worth pointing out that our main result does not depend on the

particular algorithmic choice, and other distributed or decentralised schemes could

be employed as well.

4.4 Numerical example: European power grid

In this section, we illustrate the proposed method for the actuator selection problem

using a case study involving a simplified model of the European power grid to

decide the location of HVDC links in the network.

In particular, we revisit the HVDC allocation problem studied in [139]. In general,

HVDC links are employed to enhance transient response of the power system by

influencing active and reactive power injections to damp frequency oscillations and

prevent rotor angle instability [53], [139]. The model consists of a linear system

that represents the European grid, which is composed of 74 buses connected to

a generator and a constant impedance load. The linear model is obtained after

linearising the swing equations about nominal operating points for each possible

HVDC link placement. As in [139], the purpose of this example is to assess the

efficacy of the proposed algorithm in a realistic setting, while from an application

point of view further investigation is needed, as in HVDC placement decisions in the

European power system controllability is just one of several objectives, e.g., economic.

More details about the model can be found in [53], [54] and references therein.

The linearised model has 148 states, since each bus consists of one generator and

each generator has two state variables corresponding to rotor angle and frequency

dynamics. Following [139] we suppose that any generator can be possibly connected

to any other generator in the grid, which yields 2701 possible connections, from

which we want to select the best 10 placements according to the controllability

trace optimisation metric. Simple calculations show that this configuration gives
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us a total of approximately 5.6× 1027 possibilities, which is far beyond a sorting

algorithm enumerating all alternatives can handle.

To implement Algorithm 2 all agents receive matrix A, and each agent its own

matrix Bi, i = 1, . . . , 2701, from the network. Upon this, agents can locally compute

their own ci by solving the corresponding Lyapunov equation.

The convergence rate of Algorithm 2 can be improved by introducing a sequence

z̃i(k) defined as

z̃i(k + 1) =


ẑi(k + 1), k < L,∑k

r=L
α(r)zi(r+1)∑k

r=L
α(r)

, k ≥ L,

where L is defined to be a fraction of the total number of iterations. Similar

arguments used to prove convergence of sequence (ẑ(k))k≥0 of Algorithm 2 to

the optimal solution of (4.7) applies to (z̃(k))k≥0 [48, Theorem 2]. The latter

sequence alleviates the influence of bad estimates of the dual variable in earlier

steps of Algorithm 2.

In our simulations, we initialise the primal and dual variables to zero, as suggested

in steps 1 and 2 of Algorithm 2. Furthermore, we define the iteration-varying step

size as α(k) = β/(k + 1), with β = 10, and run 2000 iterations. We also create

a time-varying communication structure to satisfy Assumption 7 by alternating

between two strongly connected graphs, i.e., aij(2r) and aij(2r + 1) are constant

for all r ∈ Z+. To guarantee the other conditions of Assumption 7 for each graph,

we generate a doubly stochastic matrix by forming a convex combination of 100

randomly generated permutation matrices, making sure we include the identity

matrix to ensure aii(k) ≥ η with η ∈ (0, 1). If the generated matrix satisfies

aij(k) ≥ η whenever aij(k) > 0 we return the matrix; in the negative case, we

repeat the process until these assumptions are achieved. Besides, if this algorithm

terminates, Assumption 7 is satisfied with T = 2.

Figure 4.1 shows the evolution of the objective function (top graph) and the

constraint violation for the sequences ẑ(k) (solid blue line) and z̃(k) (dashed red

line). In the top graph, the optimal value of the centralised problem counterpart is

shown by means of a dashed green line. Note that, at the beginning, the algorithm
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exhibits superior performance as far as the optimal value is concerned, however, the

generated primal iterates are infeasible. As the algorithm progresses, we degrade

the value of the objective to achieve primal feasibility. Additionally, as we can

see, the sequence z̃(k) has a better convergence rate than sequence ẑ(k) (we use

L = 1000 in our simulation).
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Figure 4.1: Evolution of the objective function (top graph) and constraint violation
(bottom graph) for the sequences ẑ(k) (solid blue line) and z̃(k) (dashed red line) of
Algorithm 2 for the European power model with α(k) = 10

(k+1) . In the top graph, the
dashed green line corresponds to the solution of the centralised problem counterpart.

For completeness, we also apply the decentralised algorithm whose main steps

are encoded by (9). As a stopping criterion for Algorithm 2 we use primal feasibility.

Figure 4.2 illustrates the results with the choice of α(k) = 0.1/
√

(k + 1) for the

time-vanishing step size. Observe that the optimal solution is achieved when we find

a primal feasible solution, which occurs around 3640 iterations (see zoomed areas).

Both Algorithm 2 and (4.10) converge to the optimal solution of the problem,

which in this case admits a unique solution (see Corollary 1), the former being

more adequate for large scale networks because it does not need the dual variable

to be updated by a central processor. It should be mentioned that the parameter β
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Figure 4.2: Duality gap (top) and values of the primal and dual objective values (bottom)
for the dual algorithm given in (4.10). In the bottom graph, the primal objective value at
each iteration is denoted by the solid blue line; the dual objective by the dashed red line;
and the centralised optimal by the dashed green line. A primal feasible solution is found
after approximately 3640 iterations.

of the time-varying step-size, albeit not interfering in the theoretical convergence,

is decisive for the rate of convergence.

4.5 Conclusion

In this chapter we have addressed the second challenge of current optimisation

methods stated in Chapter 1, namely, the presence of integer decision variables.

The main results of this chapter used properties of integral polyhedra to solve a

specific formulation of the actuator selection problem. Indeed, if the trace of the

controllability gramian is employed as the optimisation metric we have shown that

the optimal solution of the actuator selection problem can be obtained by means of

a linear program. To solve the resulting LP, we provided two primal-dual algorithms:

a decentralised one based on dual decomposition; and a distributed one that does

not require a common processor for dual updates. The efficacy of our methods was

investigated numerically on a European power grid case study.
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Up to this point, we have studied two of the main challenges exposed in Chapter

1. In the next two chapters of the thesis we focus on the third one by addressing

uncertain optimisation problems using the scenario approach theory.



5
Scenario based optimisation: Trading

feasibility to performance

This chapter deals with optimisation in the presence of uncertain constraints, which

constitutes one of the challenges mentioned in Chapter 1. Specifically, we study

a randomised approximation to chance-constrained optimisation under the lens

of the scenario approach theory.

5.1 Introduction

Uncertain optimisation programs capture a wide class of engineering applications.

Tractability of this class of optimisation problems is an active area of research [2],

[23], [32], [34], [35], [93], [121], [146]. In the last decades, several approaches have

been developed to cope with uncertainty in an optimisation context. Among those,

robust optimisation [6], [7], [14], [15] has been successfully applied to several control

problems [26], [55], [60], [107], [126], [141]. It consists of making certain assumptions,

often arbitrary, on the geometry of the uncertainty set (ellipsoidal, polytopic, etc.)

and then optimizing over the worst-case performance within this set. Another

approach is chance-constrained optimisation [105], [111], [118] (see also Section

2.3.3) that relies on imposing constraints that only need to be satisfied with given

83
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probability. However, these problems are hard to solve in general, without imposing

any assumption on the underlying distribution of the uncertainty (e.g., Gaussian).

Within this context, this chapter lies in the realm of the scenario approach

theory [22], [24], [25], [29]–[32], [56], [94]: a randomised technique which involves

generating a finite number of scenarios and enforcing a different constraint for

each of them, as introduced in Section 5.2 of Chapter 2. Under convexity, the

optimal solution to such a scenario program is shown to be feasible (with certain

probability) to the associated chance-constrained program.

This chapter capitalises on the fact that the bound of the sampling-and-discarding

scheme is not tight. We provide a novel analysis for a specific removal scheme

that involves solving a cascade of scenario programs and removing, at each stage,

a number of scenarios equal to the number of decision variables in each scenario

program. Our analysis culminates in a tighter bound than the one in [30]. This

bears important consequences in the application of the scenario theory to some

control problems [25], [27], [33], [42], [44], [66], [75], [90], [131], [135], [136], [145], as

we may be able to achieve better performance while guaranteeing the same level

of constraint violation and confidence. The proposed bound on the probability

of constraint violation is similar to [22], [30] in that it is distribution-free and

holds, under a non-degeneracy assumption, for all convex problems. We also

characterise a class of scenario programs for which the proposed bound holds with

equality, thus showing its tightness.

To summarise, our main contributions are: (1) proposing and analysing a

removal scheme that possesses tighter guarantees than [22], [30] on the probability

of constraint violation associated with the solution of scenario programs with

discarded constraints; (2) proving tightness of the proposed bound by characterising

the class of scenario programs that satisfies our bound with equality; (3) relaxing an

assumption present in [30] that requires the removed scenarios to be violated by the

resulting solution; and (4) developing a novel proof line. Our analysis departs from

the one of [30], and is based on probably approximately correct (PAC) learning

concepts that use the notion of compression [51], [94], [147].
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It is important to highlight that our analysis holds for a particular discarding

scheme, which requires removing scenarios in batches. Extension to this direction

is outside the scope of the current chapter. Moreover, all our results are a priori;

possibly less conservative but a posteriori results are available [32], [34], [56], however,

follow a different conceptual and analysis line from the one adopted in this chapter.

The chapter is organized as follows: Section 5.2 reviews the some results

of the scenario approach theory and recalls the main theorem on compression

learning theory that was presented in Section 2.4, as it will serve the basis for our

developments. Section 5.3 introduces the proposed scenario discarding scheme and

states the main results of the chapter, while proofs are provided in Section 5.4.

Section 5.5 provides a class of optimisation programs for which the proposed result

is tight, while Section 5.6 illustrates the theoretical results by means of a numerical

example. A summary of the results of this chapter and a connection with the

main theme of this thesis is presented in Section 5.7.

5.2 Scenario approach theory

This section reviews the main results of the scenario approach theory, showing how

they can be used to produce, with high-probability, a feasible solution to chance-

constrained optimisation problems (see Section 2.3.3 for more details). The scenario

approach theory assumes that m i.i.d. samples S = {δ1, . . . , δm} are available and

studies the properties of the optimal solution of problem

minimise
x∈X

c>x

subject to g(x, δi) ≤ 0, for all δi ∈ S \R(S),
(5.1)

where X is a convex, compact set and g is a measurable function in the second

argument as in Section 2.3.3, and g(·, δ) : Rd → R is convex for all δ ∈ ∆, S =

{δ1, . . . , δm} is a set of i.i.d. samples from P, also called scenarios, and R : S → 2S

is a mapping that takes as input S and returns a subset of S containing scenarios

that are discarded by means of some removal procedure. Throughout this chaper

the cardinality of R(S) is denoted by r. In the literature [24], [29], [31], problem
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(5.1) is referred to as scenario program since one constraint is enforced for each

scenario in S \R(S). Throughout this thesis, we impose the following assumption.

Assumption 9. The scenario program (5.1) admits a unique solution for any

S = {δ1, . . . , δm}, m ≥ d. Moreover, its feasible set has a non-empty interior.

Assumption 9 is standard within the scenario approach theory [22], [29], [30],

[32]. Denote by x?(S) the (unique) optimal solution of (2.20), where the dependence

on the scenarios in S is made explicit. Some concepts at the core of the scenario

approach theory are presented in the sequel [24], [29].

Definition 18 (Support constraint). Consider the scenario program (5.1). A

scenario in S \R(S) is said to be a support constraint (or support scenario) if its

removal changes the optimal solution of (5.1). The set of all support constraints is

called the support set of (5.1), and will be denoted by supp(x?(S)).

Definition 19 (Fully-supported problems). A scenario program (5.1) is said to be

fully-supported if for all m ∈ N the cardinality of the support set is equal to d with

probability one with respect to Pm.

Definition 20 (Non-degenerate programs). A scenario program (5.1) is non-

degenerate if, with Pm-probability one, solving the problem by enforcing the con-

straints only on the support set, supp(x?(S)), results in x?(S), i.e., the solution

obtained when all samples in S \R(S) are employed.

Note that if a problem is fully-supported then it is also non-degenerate, however,

the opposite implication does not hold. Moreover, in a convex optimization context,

non-degeneracy is a relatively mild assumption, and implies that scenarios give rise

to constraints at general positions that lead to scenario programs with non-empty

support sets. On the contrary, requiring a scenario program to be fully-supported

is much stronger. However, it exhibits interesting theoretical properties as the

number of support scenarios is exactly equal to the dimension of the decision

vector d [29], [94].
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If scenarios are not removed (i.e., R(S) = ∅) in (5.1), the authors in [29] have

shown an upper bound on the probability of constraint violation for the optimal

solution of (5.1), which is presented in the sequel.

Theorem 5 (Theorem 1, [29]). Consider Assumption 9 and fix ε ∈ (0, 1). Let

m ∈ N be given and denote by x?(S) the optimal solution of (5.1) with R(S) = ∅.

Then we have that

Pm
{
S ∈ ∆m : P{δ : g(x?(S), δ) > 0} > ε

}
≤

d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (5.2)

The left-hand side of Theorem 5 is composed of two nested probabilities: the

outer one represents the confidence with which the bound is valid, and the inner

one stands for the risk incurred by the optimal solution of problem (5.1). An

important feature of the bound in (5.2) is the fact that it holds for all convex

optimization problems and all distributions P. In fact, [29] showed that the class

of fully-supported optimization problems achieves the bound of Theorem 5. In

this sense, the bound in (5.2) is said to be tight.

On the other hand, if R(S) is not empty, the authors in [22], [30] have studied

the probability of constraint violation associated to the optimal solution of (5.1),

establishing the following result.

Theorem 6 (Theorem 2.1, [30]). Consider Assumption 9, and fix ε ∈ (0, 1). Let

m > d+r and denote by x?(S) the optimal solution of (5.1). If all removed scenarios

are violated by x?(S), i.e., g(x?(S), δ) > 0 for all δ ∈ R(S), with Pm-probability one,

then

Pm
{
S ∈ ∆m : P

{
δ ∈ ∆ : g(x?(S), δ) >0

}
> ε

}

≤
(
r + d− 1

r

)
r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i.

(5.3)
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Theorem 6 is known in the literature as the sampling-and-discarding approach

to scenario programs [30], or as scenario approach with discarded constraints [22].

Note that by allowing scenarios to be removed (i.e., R(S) 6= ∅), the sampling-and-

discarding approach enables the decision maker to improve the optimal objective

value with respect to the case when scenarios are not discarded, while keeping the

probability of constraint violation under control.

However, as opposed to Theorem 5, the bound of Theorem 6 is not tight.

Indeed, in Section 4.2 of [30], the authors show that there exists a class of convex

optimization programs and a discarding scheme such that the right-hand side of (5.3)

can be replaced by ∑r+d−1
i=0

(
m
i

)
εi(1− ε)m−i. This argument is not constructive and

is limited to an existential statement.

Motivated by the fact that Theorem 6 is not tight, in the next section we focus

on a specific removal scheme composed by a cascade of scenario programs and

employ Theorem 1 to perform the analysis of the resulting probability of constraint

violation associated to (5.1). Recall that Theorem 1 builds on a compression

learning theoretic framework and establishes that if a unique compression set exists

(see Definition 15, Chapter 2), then

Pm{S ∈ ∆m : dP(A(S), T ) > ε} =
ζ−1∑
i=0

(
m

i

)
εi(1− ε)m−i, (5.4)

where A : ∆m → 2∆ is a mapping that takes i.i.d. samples S = {δ1, . . . , δm} from

the unknown probability distribution P as input and outputs a subset of ∆.

Let T = ∆ and fix ε ∈ (0, 1). Observe that the right-hand side of (2.16) goes

to zero as m tends to infinity. This is a desirable property, as it indicates that ∆

can be asymptotically approximated by A(C). Moreover, for a fixed m ∈ N, the

result of Theorem 1 provides a non-asymptotic result, quantifying the measure of

the set ∆ \ A(C). A mapping with this property is called PAC within the learning

literature. Hence, we can reinterpret the result of Theorem 1 as stating that if a

mapping possesses a unique compression set, then it is at least (1 − ε)-accurate

as an approximation of ∆ (approximately correct), with confidence (probably)

equal to 1 − ∑ζ−1
i=0

(
m
i

)
εi(1 − ε)m−i.
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5.3 Proposed discarding scheme and main results

In this section, we present a particular scenario discarding scheme which does not

require that all removed scenarios are violated by the resulting solution. For a given

set of scenarios S = {δ1, . . . , δm}, we solve a cascade of `+ 1, where (`+ 1)d < m,

optimisation programs denoted by Pk, k ∈ {0, . . . , `}. For each k ∈ {1, . . . , `},

the corresponding program is given by

Figure 5.1: Block diagram of the proposed scheme. For a given set of scenarios
S = {δ1, . . . , δm} with (`+ 1)d < m, we solve a cascade of `+ 1 optimisation programs
denoted by Pk, k ∈ {0, . . . , `}. For each k, k ∈ {0, . . . , `− 1}, we remove Rk(S) scenarios
with |Rk(S)| = d, hence, in total r = `d scenarios (the ones in

⋃`−1
j=0Rj(S)) are discarded.

The choice of each set of discarded scenarios depends on the initial set S, thus we introduce
it as argument of Rk. If each problem is fully-supported, the elements of Rk(S) correspond
to the (unique) set of support scenarios associated with the minimizer x?k(S) of that
program – see (5.5); otherwise, Rk(S) contains the support scenarios as well as additional
scenarios selected according to a lexicographic order regularization procedure, as in (5.8).
The final solution is denoted by x?(S) = x?` (S).

Pk : minimise
x∈X

c>x

subject to g(x, δ) ≤ 0, for all δ ∈ S \
k−1⋃
j=0

Rj(S),

where Rk(S), with |Rk(S)| = d, represents the set of removed scenarios at stage

k, and ⋃k−1
j=0 Rj(S) the ones that have been removed up to stage k. For k = 0, we

solve problem P0 by enforcing all the scenarios in S. Notice that the number of

removed scenarios at stage ` is given by `d (the samples in the set ⋃`−1
j=0Rj(S)).

The choice of each set of discarded scenarios depends on the initial set S, thus

we introduce it as an argument in Rk. A schematic illustration of the proposed

scheme is provided in Figure 5.1.
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Our choice for Rk(S), k ∈ {0, . . . , `− 1}, will be detailed in the following two

subsections, and it relies on the properties of each minimizer x?k(S). We distinguish

two cases according to whether the underlying problem is fully-supported or only

non-degenerate (both of these concepts have been defined in Section 5.2, Chapter 2).

5.3.1 The fully-supported case

Throughout this section the cardinality of the support set of problem Pk, k = 0, . . . , `,

is assumed to be equal to d, which is the dimension of the optimisation variable,

with Pm-probability one. We formalize this statement in the following assumption.

Assumption 10 (Fully-supportedness). For all k ∈ {0, . . . , `}, Pk is fully-supported

with Pm-probability one.

Under Assumption 10, our choice for the removed scenarios is given by

Rk(S) = supp(x?k(S)), k ∈ {0, . . . , `− 1}, (5.5)

i.e., we remove the support set of the corresponding optimal solution of Pk. Note

that the cardinality of Rk(S) is equal to d and this choice for the removed scenarios

guarantees that the objective function decreases at each stage, thus improving

performance. Moreover, for k = `, we denote by R`(S) the support set of x?`(S);

this quantity will be used in the sequel. Note that R`(S) does not contain any

removed scenarios.

One of the main results of this chapter is to tighten the bound of Theorem 6

under Assumption 10. This is achieved in the following theorem.

Theorem 7. Consider Assumptions 9 and 10. Fix ε ∈ (0, 1), set r = `d and let

m > r + d. Consider also the scenario discarding scheme as encoded by (5.5) and

illustrated in Figure 5.1, and let the minimizer of the `-th program be x?(S) = x?`(S).

We then have that

Pm
{
S ∈ ∆m : P

{
δ ∈ ∆ : g(x?(S), δ) > 0

}
> ε

}
≤

r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (5.6)
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Figure 5.2: Pictorial example that illustrates the scheme proposed in Figure 5.1 for
fully-supported problems. In this case, we have that d = 2,m = 6, r = 4, and ` = 2,
and all the problems Pk, k ∈ {0, 1, 2}, satisfy Assumption 10. The objective function is
given by c>x = x2 (indicated by the downwards pointing arrow). The constraint sets
are denoted by the different colors patterns: the green constraints are associated to the
samples of supp(x?0(S)), the blue ones to supp(x?1(S)), and the black ones correspond
to supp(x?2(S)). Observe that the dashed-blue constraint is removed by the scheme of
Figure 5.1, but it is not violated by x?2(S).

The proof of Theorem 7 is deferred to Section 5.4.1. Note that unlike [22],

[30], we do not require the removed scenarios to be violated by the resulting

solution (see Figure 5.2).

To illustrate how the proposed scheme works, we consider the pictorial example

of Figure 5.2. Note that d = 2, m = 6, and we remove r = 4, thus requiring ` = 2

steps of the removal scheme of Figure 5.1. All the problems Pk, k ∈ {0, 1, 2}, are

fully-supported, thus satisfying Assumption 10. The objective function is given by

c>x = x2 and is indicated by the downwards pointing arrow. The corresponding

solution for the intermediate problems is illustrated by x?k(S), for k ∈ {0, 1, 2},

and the support set of each stage by different colour patterns. For instance, the

green constraints are the support set, namely, supp(x?0(S)), of problem P0. The

shaded colour under each constraint corresponds to the region of the plane that

violates that given constraint, e.g., we notice that x?1(S) violates both constraints

that belong to supp(x?0(S)) and satisfies all the remaining ones. The result of

Theorem 7 provides guarantees for the probability of violation of x?2(S). Note
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that the dashed-blue constraint is removed at stage 1, but it is not violated by

the final solution of our scheme.

5.3.2 The non-degenerate case

In this subsection, we assume that problem Pk, k ∈ {0, . . . , `}, is non-degenerate.

Assumption 11 (Non-degeneracy). For all k ∈ {0, . . . , `}, Pk is non-degenerate

with Pm-probability one.

In case of a non fully-supported problem (supp(x?k(S)) < d, for some k ∈

{0, . . . , `}), we adopt a procedure called regularization, in the same spirit as in [22].

This is based on introducing a lexicographic order as a tie-break rule to select which

additional scenarios to append to supp(x?k(S)), thus constructing a set of cardinality

d. Note that unless we impose such an order there is no unique choice as all scenarios

that are not included in supp(x?k(S)) are not of support, hence their presence leaves

the optimal solution unaltered. To this end, we put a unique linear order on the

elements of S, i.e., we assign them a distinct numerical label. For each k ∈ {0, . . . , `},

let νk(S) = d − |supp(x?k(S))| and define the following sets recursively as

Zk(S) =
{
νk(S) scenarios with the smallest labels in

S \
( k−1⋃
j=0

{
supp(x?j(S)) ∪ Zj(S)

}
∪ supp(x?k(S))

)}
, (5.7)

with Z0(S) containing the ν0(S) smallest according to the linear order elements

of S \ supp(x?0(S)). Note that the set appearing in the definition of Zk(S) in (5.7)

corresponds to scenarios available at stage k that are not of support.

For each k ∈ {0, . . . , `− 1}, we can now define the sets of discarded samples as

Rk(S) = supp(x?k(S)) ∪ Zk(S). (5.8)

Notice that by construction |Rk(S)| = d, while if for any k ∈ {0, . . . , `}, Pk is

fully-supported, then Rk(S) = supp(x?k(S)), i.e., it coincides with the support set

of x?k(S). Similar to the fully-supported case, we denote by R`(S) the superset of
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Figure 5.3: Illustration of the proposed scheme applied to non-degenerate, but not
fully-supported, problems. The intermediate solutions are denoted by x?k(S), k = 0, 1, 2.
The different colour patterns depict the removed scenarios at each stage. The green
constraints are the ones removed at stage 0, the blue ones those removed at stage 1 of
the scheme presented in Figure 5.1. Similar as before, the objective function is given
by c>x = x2 and this is indicated by the downwards arrow. Observe that the optimal
solution, consequently the final solution returned by our scheme, depends on the linear
order imposed to the original scenarios.

the support set of x?`(S) obtained by appending, if necessary, ν`(S) scenarios

from the remaining ones.

Notice that similarly to the fully-supported case, the objective function will

necessarily decrease at each stage and we do not require that all scenarios discarded

up to stage k − 1, i.e., ⋃k−1
j=0 Rj(S), are violated by x?k(S).

Remark 3. Consider two arbitrary scenario sets C ⊂ C ′, and denote by x?k(C) and

x?k(C ′) the minimizers of Pk with C and C ′, respectively, replacing S. Moreover,

define Zk(C) and Zk(C ′) as in (5.7) with C and C ′, respectively, in place of S. The

linear order imposed on S can be used to induce a lexicographic order on the cost of

the intermidiate problems Pk by means of a process called regularization. In fact, by

using the linear order on S, we may impose that Fk(x?k(C)) < Fk(x?k(C ′)) if: either

c>x?k(C) < c>x?k(C ′); or c>x?k(C) = c>x?k(C ′) and, at the first element that Zk(C)

and Zk(C ′) differ, the corresponding label of Zk(C) is strictly lower with respect to

the imposed linear order on S than the one of Zk(C ′). Moreover, it is shown in [22]
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that Pk with its objective function replaced by

Fk(x) =
(
c>x, Zk(S)

)
(5.9)

is a fully-supported program, and the constructed set Rk(S) in (5.8) forms its

unique support set of cardinality d. Regularization is thus a way to select among

subsets of scenarios that would otherwise yield the same objective value. We will

use this procedure in Section 5.4.2 to prove Theorem 8 below.

We are now in position to state the main result related to non-degenerate prob-

lems.

Theorem 8. Consider Assumptions 9 and 11. Fix ε ∈ (0, 1), set r = `d and let

m > r + d. Consider also the scenario discarding scheme as encoded by (5.8) and

illustrated in Figure 5.1, and let the minimizer of the `-th program be x?(S) = x?`(S).

We then have that

Pm
{
S ∈ ∆m : P

{
δ ∈ ∆ : g(x?(S), δ) > 0

}
> ε

}
≤

r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (5.10)

It is important to note that (5.10) holds for any linear order imposed in the

original samples S. Note that the optimal objective value of the scheme, however,

depends on the imposed linear order, and we only provide feasibility guarantees and

not optimality. However, this is also the case for the greedy strategy in [22], [30].

The only available results for the optimal cost are given in [30] when the removal

scheme is the optimal one, which is, however, of combinatorial complexity.

Remark 4. It should be noted that the assumption in [22], [30] appearing in the

statement of Theorem 6, that requires all discarded scenarios to be violated by the

final solution with Pm-probability one, has some non-degeneracy implications for all

intermediate problems. To see this, notice that if we allow for degenerate problems,

then pathological situations where all scenarios are identical are admissible and may

happen with non-zero probability (e.g., allowing for atomic masses). Clearly, in such
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cases there is no scenario that can be discarded while being violated by the resulting

solution which remains unaltered. Therefore, we tighten the bound in Theorem 8,

without strengthening the assumptions in [22], [30].

To clarify how the scheme presented in Figure 5.1 works when applied to non-

degenerate problems, consider the example depicted in Figure 5.3. Similar as before,

we have d = 2,m = 7, and want to remove 4 constraints, i.e., r = 4. As opposed

to Figure 5.2, however, note that the constraints are enumerated according to an

arbitrary order, which is used to compose the sets Zk(S), k ∈ {0, 1, 2}, as described

by Equation (5.7). Moreover, problems P0 and P1 are not fully-supported, as the

number of support scenarios is equal to one in each of these cases. Our scheme first

removes the scenario that supports the solution x?0(S) and the one labeled as 1,

since it is the scenario with the smallest order among the remaining ones. These

scenarios are depicted as green in Figure 5.3. Then, we solve problem P1 with

the resulting scenarios, obtaining x?1(S) as an intermediate solution and scenarios

labeled as 2 and 3 to be removed. The former constraint is removed as it is in

the support set of x?1(S), and the latter as it is the sample with the smallest index

from the remaining ones. Finally, the solution provided by the scheme, and whose

guarantees are given in Theorem 8, is denoted by x?2(S).

5.4 Proof of the main Results

The proofs of Theorems 7 and 8 are presented in the sequel. Even though Theorem

7 could have been obtained as a special case of Theorem 8, we decide to provide

seperate arguments as the proof of the former is simpler and contains the main

ideas behind our approach.

In both theorems, our argument proceeds as follows. We first show that

there exists a natural mapping associated with the proposed removal procedure

that takes as input the set of samples and returns a subset of ∆ (similar to the

discussion in Section 2.4). Then we show that such a mapping possesses a unique

compression set. This latter step for the non-degenerate case involves the use
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of regularisation, which complicates and obscures the analysis. Our analysis is

concluded by leveraging Theorem 1 to provide the proposed PAC bound on the

probability of constraint violation.

5.4.1 The fully-supported case

Throughout this subsection, we consider Assumption 10. Let m > (` + 1)d, and

consider any set C ⊂ S, with |C| = (`+ 1)d. We consider the proposed scheme of

Figure 5.1, fed by C rather than S. All quantities introduced in Section 5.3 depending

on S would now depend on C instead. For a given set of scenarios I ⊂ C, we define

z?(I) = argmin
x∈X

c>x

subject to g(x, δ) ≤ 0, for all δ ∈ I. (5.11)

Recall that x?k(C) denotes the minimizer of Pk which in turn is based on the samples

in C \ ∪k−1
j=0Rj(C), i.e., the ones that have not been removed up to stage k of the

proposed scheme. It thus holds that x?k(C) = z?(C \ ∪k−1
j=0Rj(C)) – note that the

argument of z? in this case depends on k, k ∈ {0, . . . , `}. Recall also that, under

Assumption 10, we have Rk(C) = supp(x?k(C)).

Since we will be invoking the framework introduced in Section 2.4, Chapter 2,

we define the mapping A : ∆m → 2∆, with ζ = (` + 1)d, as

A(C) =
{{
δ ∈ ∆ : g(x?`(C), δ) ≤ 0

}

∩
{ ⋂̀
k=0

{
δ ∈ ∆ : c>z?(J ∪ {δ}) ≤ c>x?k(C),

for all J ⊂ C \ ∪k−1
j=0Rj(C), with |J | = d− 1

}}}

∪
{
`−1⋃
k=0

Rk(C)
}

=
(
A1(C) ∩ A2(C)

)
∪ A3(C). (5.12)

The main motivation to define the mapping in (5.12) is the fact that its probability

of violation will be shown to upper bound that of {δ ∈ ∆ : g(x?`(C), δ) ≤ 0}, which

is ultimately the quantity we are interested in (as shown in Section 5.4.1, step 3).

It is worth pointing out that the mapping A in (5.12) is defined for any finite set
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of samples (similar to the mapping in Remark 1 of Section 2.4). We decided not

to index it with the cardinality of its domain to ease notation.

Note that A(C) comprises three sets:

i A1(C) contains all realisations of δ for which the final decision of our proposed

scheme x?`(C) = x?(C) remains feasible. This is the set whose probability of

occurrence we are ultimately interested to bound.

ii A2(C), the intersection of `+ 1 sets indexed by k ∈ {0, . . . , `}, each of them

containing the realisations of δ such that, for all subsets of cardinality d− 1

from the remaining samples at stage k, the cost c>z?(J ∪ {δ}) is lower than

or equal to c>x?k(C). The former cost corresponds to appending δ to any set

J of d− 1 scenarios from C \ ∪k−1
j=0Rj(C), while the latter corresponds to the

cost of the minimizer x?k(C) of Pk. Informally, this inequality is of similar

nature with that of the first set in A(C), however, rather than considering

constraint satisfaction it only involves some cost dominance condition for each

of the interim and the final optimal solutions. The motivation to use this

representation rather than constraint satisfaction conditions stems from the

fact that in Section 5.3.2 we will be appending a lexicographic order to the

cost so that we break the tie among multiple compression sets. Besides, these

sets carry information about the path taken by the proposed scheme, which

is to be understood, in this context, as the sequence (xk(C))`k=0.

iii A3(C), which includes all scenarios that are removed by the discarding scheme.

Implicit in the definition of mapping (5.12) is the fact that, for any compression

set C, all samples that are not removed in the intermediate stages must be

contained in the set A1(C) ∩A2(C). This fact will be crucial in the following

arguments.

The following proposition establishes a basic property of any compression

associated to the mapping (5.12).
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Proposition 8. Consider Assumptions 9 and 10. Set r = `d and let m > (`+ 1)d.

We have that C ⊂ S is a compression set for A(C) in (5.12) if and only if, for all

k ∈ {0, . . . , `},

x?k(C) = x?k(S). (5.13)

Proof. We first show necessity. Suppose that C is a compression set but, for the

sake of contradiction, we have that there exists k ∈ {0, . . . , `} and δ̄ ∈ S \ C such

that

x?k(C) 6= x?k(C ∪ {δ̄}). (5.14)

Let k̄ be the minimum index such that (5.14) holds, while we have that x?j(C) =

x?j(C ∪ {δ̄}), for all j < k̄.

By Assumption 10, the last statement implies that supp(x?j(C)) = supp(x?j(C ∪

{δ̄})), for all j < k̄, as the support set of each optimal solution is unique. Hence,

Rj(C) = Rj(C ∪ {δ̄}) for all j < k̄, and Rj(C) = supp(x?j(C)) for fully-supported

problems (similarly for Rj(C ∪ {δ̄})). By (5.11), we then have

x?k̄(C) = z?(C \ ∪k̄−1
j=0Rj(C)), (5.15)

x?k̄(C ∪ {δ̄}) = z?((C \ ∪k̄−1
j=0Rj(C)) ∪ {δ̄}). (5.16)

Since the right-hand side of (5.16) involves one more scenario with respect to the

right-hand side of (5.15), the feasible set of (5.16) is a subset set of the one of (5.15).

Moreover, by the fact that x?
k̄
(C ∪ {δ̄}) 6= x?

k̄
(C) and Assumption 9, we obtain that

c>x?k̄(C) < c>x?k̄(C ∪ {δ̄}). (5.17)

Notice that δ̄ belongs to the support set of x?
k̄
(C ∪ {δ̄}), as its removal results in

a different optimal solution with lower cost in (5.17). In other words, there exists

J̄ ⊂ C \ ∪k̄−1
j=0Rj(C) (in fact, J̄ = supp(x?

k̄
(C ∪ {δ̄})) \ {δ̄}) of cardinality d− 1 such

that by (5.16), we have that

c>x?k̄(C) < c>x?k̄(C ∪ {δ̄}) = c>z?(J̄ ∪ {δ̄}). (5.18)
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At the same time, C is assumed to be a compression set. Since δ̄ /∈ C, then δ̄ /∈

∪`−1
k=0Rk(C) = A3(C), as ∪`−1

k=0Rk(C) ⊂ C. As a result, δ̄ will give rise to a constraint

in P`, hence δ̄ ∈ A2(C), which in turn implies that for all J ⊂ C \ ∪`−1
j=0Rj(C) with

|J | = d− 1, and for all k ≤ `,

c>z?(J ∪ {δ̄}) ≤ c>x?(C) ≤ c>x?k(C), (5.19)

where the first inequality follows from the fact that c>x?(C) is the optimal value

for P`, and x?(C) = x?`(C) by construction satisfies all constraints with scenarios

in J ∪ {δ̄}. The second inequality follows from the fact that k ≤ `, and the

cost deteriorates as k increases. Setting k = k̄ and J = J̄ in (5.19) establishes a

contradiction with (5.18), thus showing that x?k(C) = x?k(C∪{δ}), for any δ ∈ S \C,

and any k ∈ {0, . . . , `}. Proceeding inductively, adding one by one each element

in S \ C, we can show that x?k(C) = x?k(S), for any k ∈ {0, . . . , `}, thus concluding

the necessity part of the proof.

We now show sufficiency. Let C ⊂ S be such that x?k(C) = x?k(S) for all

k ∈ {0, . . . , `}. We aim to show that C is a compression for S, i.e., δ ∈ A(C)

for all δ ∈ S. Recalling the definition of the mapping A(C) from (5.12) we

note that, under this scenario, the sets A1(C) and A3(C) are trivially equal to

A1(S) and A3(S), respectively. Moreover, since C ⊂ S and x?k(C) = x?k(S) for all

k ∈ {0, . . . , `}, which implies that Rk(C) = Rk(S) by Assumption 9, we have that

S \∪k−1
j=0Rj(S) = S \∪k−1

j=0Rj(C) ⊃ C \∪k−1
j=0Rj(C). The latter implies then that the

inequalities in A2(S) constitute a superset of those in A2(C), hence, that problem

is more constrained and as a result A2(S) ⊂ A2(C). By construction we have that

δ ∈ A(S) for all δ ∈ S. This in turn implies that if a sample is not removed, then

it will have to be included in A2(S), and due to the established inclusion also in

A2(C). Since A1(S) = A1(C) and A3(S) = A3(C), we then have that δ ∈ A(C)

for all δ ∈ S, showing that C is a compression set. This concludes the proof of the

proposition.
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A natural compression candidate is

C =
⋃̀
k=0

supp(x?k(S)), (5.20)

as it consists of the support sets of the intermediate problems.

Existence: We prove that C in (5.20) is a compression set. By the sufficient

part of Proposition 8, it suffices to show that the set C in (5.20) satisfies x?k(C) =

x?k(S), for all k ∈ {0, . . . , `}. We will show this by means of induction. For the

base case k = 0, notice that

c>x?0(S) = c>z?(S) = c>z?(supp(x?0(S))) = c>x?0(C), (5.21)

where the first equality is due to (5.11), the second equality is due to the fact

that supp(x?0(S)) is the support set of x?0(S), while the last equality is due to

Assumption 10, the definition of support set and the fact that supp(x?0(S)) ⊂ C.

By (5.21), and Assumption 9, we conclude that x?0(C) = x?0(S).

To complete the induction argument, we assume that x?j(C) = x?j(S) for all

j ∈ {0, . . . , k̄}, for some k̄ < `. We will show that x?
k̄+1(C) = x?

k̄+1(S). To this

end, by Assumption 10, x?j(C) = x?j(S) for all j ≤ k̄ implies that supp(x?j(C)) =

supp(x?j(S)), for all j ≤ k̄, as the support set of each optimal solution is unique.

Moreover, Rj(C) = Rj(S) for all j < k̄, as Rj(C) = supp(x?j(C)) for fully-supported

problems. Similarly to the base case we have that

c>x?k̄+1(C) = c>z?(C \ ∪k̄j=0Rj(S)) ≤ c>z?(S \ ∪k̄j=0Rj(S)) = c>x?k̄+1(S), (5.22)

where the first and last equalities are due to (5.11), and the inequality is due to

the fact that C \ ∪k̄j=0Rj(S) ⊆ S \ ∪k̄j=0Rj(S). Moreover

c>x?k̄+1(S) = c>z?(S \ ∪k̄j=0Rj(S))

= c>z?(supp(x?k̄+1(S))) ≤ c>z?(C \ ∪k̄j=0Rj(S)) = c>x?k̄+1(C), (5.23)

where the first and last equalities are due to (5.11), the second one due to the fact that

supp(x?
k̄+1(S)) ⊂ S \ ∪k̄j=0Rj(S), and the inequality holds since Rj(C) = Rj(S) and
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supp(x?
k̄+1(S)) ⊂ C \∪k̄j=0Rj(S). By (5.22) and (5.23) we then have that x?

k̄+1(C) =

x?
k̄+1(S), thus concluding the induction proof. In other words, we have shown that

x?k(C) = x?k(S), for all k ∈ {0, . . . , `}. (5.24)

Relation (5.24) together with the sufficiency part of Proposition 8 shows that the

candidate C in (5.20) is a compression set.

Uniqueness: To show that C in (5.20) is the unique compression set, assume

for the sake of contradiction that there exists another compression C ′ ⊂ S for

the mapping defined in (5.12), C ′ 6= C, with |C ′| = (` + 1)d. Since C ′ ⊂ S is

a compression, Proposition 8 (necessity part) implies that x?k(C ′) = x?k(S), for

all k ∈ {0, . . . , `}, as C ′ is a compression. Besides, by the existence part (Step 1

above), we have shown that for C given in (5.20) we have that x?k(C) = x?k(S) for

all k ∈ {0, . . . , `}. We thus have that for all k ∈ {0, . . . , `}, x?k(C) = x?k(C ′). This

in turn implies that supp(x?k(C)) = supp(x?k(C ′)) for all k ∈ {0, . . . , `}, which, by

Assumption 10, leads to C = C ′ (to see this notice that ∪`k=0supp(x?k(S)) ⊂ C ′

and |C ′| = (` + 1)d), thus establishing a contradiction.

Linking Theorem 1 with the probability of constraint violation: Recall that

A(C) =
(
A1(C) ∩ A2(C)

)
∪ A3(C), (5.25)

where the individual sets are as in (5.12). Recall also that A3(S) is a discrete set that

contains the removed samples throughout the execution of the scheme of Figure 5.1.

Fix any S with m scenarios, set r = `d and let m > (`+ 1)d. Fix also ε ∈ (0, 1). Let

C ⊂ S with |C| = (`+1)d be the unique compression defined in (5.20). We have that

P{A(C)} = P{(A1(C) ∩ A2(C)) ∪ A3(C)} = P{A1(C) ∩ A2(C)} ≤ P{A1(C)}

= P{δ ∈ ∆ : g(x?(C), δ) ≤ 0},= P{δ ∈ ∆ : g(x?(S), δ) ≤ 0}, (5.26)

where the first equality is due to the fact that P{A3(C)} = 0, since A3(C) is a

discrete set and we have imposed the non-degeneracy condition of Assumption 11

which prevents scenarios to have accumulation points with non-zero probability,

while the inequality is due to the fact that A1(C) ∩ A2(C) ⊆ A1(C). The second
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last equality is by definition of A1(C), and the last one follows from the fact

that x?(C) = x?(S) (see (5.24)).

We then have that if P{δ ∈ ∆ : g(x?(S), δ) > 0} > ε then P{δ ∈ ∆ : δ /∈

A(C)} > ε. As a result, {S ∈ ∆m : P{δ ∈ ∆ : g(x?(S), δ) > 0} > ε} ⊆ {S ∈

∆m : P{δ ∈ ∆ : δ /∈ A(C)} > ε}. The last statement implies then that

Pm{S ∈ ∆m : P{δ ∈ ∆ : g(x?(S), δ) > 0} > ε}

≤ Pm{S ∈ ∆m : P{δ /∈ A(C)} > ε}. (5.27)

Therefore, since set C in (5.20) is the unique compression of A(C), by Theo-

rem 1 we have that

Pm{S ∈ ∆m : P{δ ∈ ∆ : δ /∈ A(C)} > ε} ≤
r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (5.28)

By (5.27) and (5.28) we then have that Pm{(δ1, . . . , δm) ∈ ∆m : P{δ ∈ ∆ : g(x?(S), δ) >

0} > ε} ≤ ∑r+d−1
i=0

(
m
i

)
εi(1− ε)m−i, thus concluding the proof of Theorem 7.

5.4.2 The non-degenerate case

Throughout this subsection, we consider Assumption 11. Let m > (` + 1)d, and

consider any set C ⊂ S with |C| = (` + 1)d. We modify the mapping A(C) in

(5.12) by replacing the second set in its definition with

A2(C) =
⋂̀
k=0

{
δ ∈ ∆ : Fk(z?(J ∪ {δ})) ≤ Fk(x?k(C)),

for all J ⊂ C \ ∪k−1
j=0Rj(C), with |J | = d− 1

}
, (5.29)

where Fk(·) is the augmented objective function defined in (5.9), related to Pk defined

by means of the regularization procedure of Section 5.3. The above inequality is

to be understood in a lexicographic sense as detailed in Remark 3. A natural

candidate compression set in this case is

C =
⋃̀
k=0

(supp(x?k(S)) ∪ Zk(S)), (5.30)

which is composed by the removed samples of the scheme, and the support set of

the last stage together with the corresponding constraints in Z`(S). In fact, we now
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append Zk(S) in the definition of C to ensure that |C| = (`+ 1)d, as |supp(x?k(S))|

could be lower than d as the intermediate problems might not be fully-supported.

Similarly to the fully-supported case, our goal is to show that the compression set

defined in (5.30) is the unique compression set of size (` + 1)d for the mapping

in (5.12), with A2(C) in (5.30) in place of A2(C) in (5.12). By (5.8), recall that

Rk(C) = supp(x?k(C)) ∪ Zk(C), k ∈ {0, . . . , ` − 1}.

Proposition 9. Suppose Assumptions 9 and 11 hold. Let C be the set in (5.30),

and consider the scheme of Figure 5.1 with the removed scenarios given by (5.8).

We have that:

i) x?k(C) = x?k(S) and Zk(C) = Zk(S) for all k ∈ {0, . . . , `}.

ii) Let C ′ be any other compression of size (` + 1)d. Suppose Rj(C) = Rj(C ′)

for all j ∈ {0, . . . , k̄ − 1}, where k̄ is the smallest index such that x?
k̄
(C ′) 6=

x?
k̄
(C). Then x?

k̄
(C ′) 6= x?

k̄
(C ′ ∪{δ}) for some δ ∈ supp(x?

k̄
(C)) \ supp(x?

k̄
(C ′)).

Moreover, such a δ is in fact in the set C \ C ′.

Proof. Item i): We use induction. Fix k = 0 and note that

x?0(C) = z?(C) = z?(supp(x?0(S))) = x?0(S), (5.31)

where the first equality follows from the definition in (5.11), for the second one we

use the definition of the support set, and the third one follows from the definition

of x?0(S) and the definition of the support set. Moreover, we have that

Z0(C) =
{
ν0(S) scenarios with the smallest labels in C \

{
supp(x?0(S))

}}
=
{
ν0(S) scenarios with the smallest labels in S \

{
supp(x?0(S))

}}
= Z0(S), (5.32)

where the first equality is due to the definition of C in (5.30) and the fact that

Z0(S) ⊂ C, while the last one is due to the definition of Z0(S) in (5.7). Assume
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now that x?k(C) = x?k(S) and Z?
k(C) = Z?

k(S) for all k ∈ {0, . . . , k̄}, and consider

the case k̄ + 1. Indeed, we have that

x?k̄+1(C) = z?(C \ ∪k̄j=0Rj(C)) = z?(supp(x?k̄+1(S)))

= z?(S \ ∪k̄j=0Rj(S)) = x?k̄+1(S), (5.33)

where these relations follow as in (5.31) for the case k = 0. We also have that

Z?
k̄+1(C) =

{
νk̄+1(S) scenarios with the smallest labels in

C \
( k̄⋃
j=0

Rj(S) ∪ supp(x?k̄+1(S))
)}

= Z?
k̄+1(S), (5.34)

since Z?
k̄+1(S) ⊂ C \ ⋃k̄j=0{Rj(S) ∪ supp(x?

k̄+1(S))} due to the particular choice

of C in (5.30), thus proving that for C in (5.30) we have x?k(C) = x?k(S) and

Zk(C) = Zk(S), for all k ∈ {0, . . . , `}. This concludes the proof of item i).

Item ii): We prove the contrapositive. Assume that for all δ ∈ supp(x?
k̄
(C)) \

supp(x?
k̄
(C ′)) we have that x?

k̄
(C ′) = x?

k̄
(C ′∪{δ}).We will show that x?

k̄
(C) = x?

k̄
(C ′).

We then have that

c>x?k̄(C
′) = c>x?k̄(C

′ ∪ {δ}) = c>x?k̄(C
′ ∪ supp(x?k̄(C))) = c>x?k̄(C), (5.35)

where the second equality holds due to Lemma 2.12 in [22] since C ′ ∪ {δ} ⊂

C ′ ∪ supp(x?
k̄
(C)). The last equality follows from the definition of the support set

and the non-degeneracy condition of Assumption 3. By Assumption 9 we then

conclude that x?
k̄
(C) = x?

k̄
(C ′).

We now show that such a δ must belong to C \ C ′. In fact, choose δ̄ ∈

supp(x?
k̄
(C)) \ supp(x?

k̄
(C ′)) and assume for the sake of contradiction that δ̄ ∈ C ′.

This implies that δ̄ ∈ Rj(C ′) for some j ≥ k̄. In this is the case, we have that

c>x?k̄(C
′ ∪ {δ̄}) = c>z?

((
C ′ \

k̄−1⋃
j=0

Rj(C)
)
∪ {δ̄}

)
= c>z? (supp(x?k̄(C

′))) = c>x?k̄(C
′) (5.36)

where the first relation holds due to (5.11) and the fact that Rj(C ′) = Rj(C) for all

j < k̄, the second one is due to the fact that supp(x?
k̄
(C ′)) ⊂ C ′ \⋃k̄−1

j=0 Rj(C) ∪ {δ̄}
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and δ̄ ∈ Rj(C ′) for j ≥ k̄. The third equality follows from the definition of the

support set and the non-degeneracy condition of Assumption 11. However, note

that (5.36) contradicts our choice of δ̄, which requires that x?
k̄
(C ′) 6= x?

k̄
(C ′ ∪ {δ̄}).

This concludes the proof.

Proof of Theorem 8: Existence. The existence part follows mutatis mutandis

from the one of Theorem 7. In fact, A1(C) = A1(S) and A3(C) = A3(S) by

Proposition 9, item i), and A2(S) ⊂ A2(C) as C ⊂ S (see the discussion at

the end of Proposition 8).

Uniqueness: Let C ′ be another compression of size (`+ 1)d and assume for the

sake of contradiction that C 6= C ′. We can distinguish two possible cases. Case I:

there exists a k̄ ∈ {0, . . . , `} such that x?
k̄
(C ′) 6= x?

k̄
(C); or case II: x?k(C ′) = x?k(C)

for all k ∈ {0, . . . , `}, but there exists a k̃ ∈ {0, . . . , `} such that Zk̃(C ′) 6= Zk̃(C).

In the sequel, we argue separately that neither of these cases can happen.

Case I: Let k̄ be the smallest index such that x?
k̄
(C ′) 6= x?

k̄
(C), and let k̃ ≤ k̄

be the smallest index such that Zk̃(C ′) 6= Zk̃(C). Consider first the case where

k̃ < k̄. Under these definitions, note that Rj(C ′) = Rj(C) for all j < k̃.

Moreover, we have that

Zk̃(C ′) =
{
νk̃(C) scenarios with the smallest labels in C ′ \

k̃−1⋃
j=0

Rj(C ′)
}

=
{
νk̃(C) scenarios with the smallest labels in C ′ \

k̃−1⋃
j=0

Rj(S)
}
, (5.37)

where the first equality is by the definition in (5.7) and the fact that νk̃(C ′) = νk̃(C)

since k̃ < k̄; the second equality follows since Rj(C ′) = Rj(C) = Rj(S) – the last

equality follows from Proposition 9, item i) – for all j ≤ k̃ − 1 and due to the

uniqueness requirement of Assumption 9. Note that Zk̃(C ′) 6= Zk̃(S) and C ′ ⊂ S

implies that, for all δ ∈ Zk̃(C ′) \ Zk̃(S),

yδ > max
ξ∈Zk̃(S)

yξ = ymax, (5.38)

where yδ ∈ N corresponds to the label associated to δ.
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We will use the relation (5.38) to show that any element in C \ C ′ has a label

greater than ymax. In fact, note that

C ′ \ C ⊂
{
∪`j=k̃+1Rj(C ′)

}
∪ {Zk̃(C ′) \ Zk̃(C)} , (5.39)

hence it suffices to show that any element in either set in the right-hand side of (5.39)

is greater than ymax. To this end, fix any δ ∈ ∪`
j=k̃+1Rj(C ′) and note that

yδ > max
ξ∈Zk̃(C′)\Zk̃(C)

yξ > ymax, (5.40)

where the first inequality is due to the fact that since such a δ has not been removed

up to stage k̃, then its label will be greater than the ones in Zk̃(C ′), and as a result

the ones in Zk̃(C ′) \ Zk̃(C). The second inequality follows from (5.38) and the fact

that Zk̃(C ′) \Zk̃(C) ⊂ Zk̃(S). Therefore, for any δ ∈ C ′ \C we have that yδ > ymax.

From now on, let δ be the scenario associated to ymax. Pick J̄ = {supp(x?
k̃
(C))}∪

{Zk̃(C) \ {δ}}, which has cardinality d− 1 and is a subset of C \ ∪k̃−1
j=0Rj(C), and

fix δ̄ ∈ C ′ \ C. Note that under this choice of δ̄

Fk̃(z?(J̄ ∪ {δ̄})) > Fk̃(x?k̃(C)), (5.41)

since yδ̄ > ymax (by our previous discussion) and the inequality is interpreted

lexicographically. However, this contradicts the fact that C is a compression set

(see Definition 15) as δ̄ ∈ C ′ \ C ⊂ S, hence δ̄ /∈ A3(C ′) has not been removed,

but δ̄ /∈ A2(C) due to (5.41).

Consider now the case k̃ = k̄. Note that, in this case, we have that Rj(C ′) =

Rj(C) for all j ≤ k̄− 1. Based on the result of Proposition 9, item ii), applied to C ′

(note that the assumptions of Proposition 9, item ii), are satisfied with our choice of

C ′), we observe that there exists a δ̄ ∈ {supp(x?k(C))\supp(x?k(C ′))}∩{C \C ′} such

that x?
k̄
(C ′) 6= x?

k̄
(C ′ ∪ {δ̄}). Repeating the arguments following Equations (5.15)

and (5.16) in the necessity proof of Proposition 8 with C ′ in the place of C in that

proposition, we reach a contradiction that C ′ is a compression set.

Case II: We can reach a contradiction if case II holds in a similar fashion as

in case I. In fact, letting k̃ be the smallest index such that Zk̃(C ′) 6= Zk̃(C), the

proof proceeds in an identical manner with case I.
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Hence, we conclude that in any case C = C ′, thus proving uniqueness of

the compression set in (5.30).

Linking Theorem 1 with the probability of violation: Note that for the non-

degenerate case the mapping has the same structure as the one in (5.12), with the

set A2(C) in (5.12) being substituted with the one in (5.29). The arguments then

follows mutatis mutandis the ones in the last part of the fully-supported case. This

concludes the proof of Theorem 8.

5.5 Tightness of the bound of Theorem 7

5.5.1 Class of programs for which the bound is tight

We provide a sufficient condition on the problems Pk so that the solution returned

by the scheme of Figure 5.1 achieves the upper bound given by the right-hand side

of (5.10) when all the intermediate problems Pk, k = 0, . . . , `, are fully-supported.

The result of this section implies that the bound of Theorem 7 is tight, i.e., there

exists a class of convex scenario programs where it holds with equality.

To this end, we replace the mapping A in (5.12) with Ā : ∆m → 2∆ defined

Ā(C) =
{
δ ∈ ∆ : g(x?`(C),δ) ≤ 0

}
∪
{
`−1⋃
k=0

supp(x?k(C))
}
. (5.42)

Note that Ā(C) coincides with the one in (5.25), but without the set A2(C) in

its definition. We impose the following assumption.

Assumption 12. Fix any S = {δ1, . . . , δm} ∈ ∆m and let C ⊂ S. For any

k ∈ {0, . . . , `} and δ ∈ S such that δ ∈ supp(x?k(C)), we have that

g(z?(J), δ) > 0,

for all J ⊂ C \
(
∪k−1
j=0 supp(x?j(C)) ∪ {δ}

)
with |J | = d.

Assumption 12 imposes a restriction on the class of fully-supported problems.

For instance, the pictorial example of Figure 5.2 does not satisfy Assumption 12,

even though all the intermediate problems Pk are fully-supported, as the dashed-blue

removed constraint is not violated by the resulting solution. Indeed, Assumption 12
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requires that, with Pm-probability one, whenever a sample belongs to the support

scenarios of any intermediate problem, then the scenario associated with it is

violated by all the solutions that could have been obtained using any subset of

cardinality d from the remaining samples. Note that verifying Assumption 4 is hard

in general; we show in the next subsection an example that satisfies this requirement

and admits an analytic solution. Assumption 12 is similar to the requirement of

Theorem 6 [22], [30], however, in Theorem 9 below we exploit it in conjunction with

the discarding scheme of Figure 5.1 to show that the result of Theorem 7 is tight.

This serves as a constructive argument for the existential result of [30].

Note that in this chapter we do not offer any means to check the validity

of Assumption 12; however, we show that this class of problems is not empty

in the next section.

Theorem 9. Consider Assumptions 9, 10, and 12. Fix ε ∈ (0, 1), set r = `d and let

m > r + d. Consider also the scenario discarding scheme as encoded by (5.5) and

illustrated in Figure 5.1, and let the minimizer of the `-th program be x?(S) = x?`(S).

We then have that

Pm
{
S ∈ ∆m : P

{
δ ∈ ∆ : g(x?(S), δ) > 0

}
> ε

}
=

r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (5.43)

Proof. Existence: We first show that the set C given in (5.20) is a compression for

the mapping in (5.42). Recall that under Assumption 10 we have that Rk(S) =

supp(x?k(S)) for all k ∈ {0, . . . , `}. Applying a similar induction argument as in the

existence part of Theorem 7, we have that x?k(C) = x?k(S) for all k ∈ {0, . . . , `}.

Hence, by the definition of the mapping Ā(C) in (5.42), we obtain that Ā(C) = Ā(S),

thus showing that C in (5.20) is a compression.

Uniqueness: Let C ′ be another compression of size (` + 1)d. We will show

that x?k(C ′) = x?k(S) for all k ∈ {0, . . . , `}, which by the existence part yields that

x?k(C) = x?(C ′) for all k ∈ {0, . . . , `}. By Assumption 9 and 10, this would then

imply that C = C ′.
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To show that x?k(C ′) = x?k(S) for all k ∈ {0, . . . ,m}, it suffices to show that for

all δ ∈ S \ C ′ we have that

x?k(C ′) = x?k(C ′ ∪ {δ}), for all k ∈ {0, . . . , `}. (5.44)

In fact, if (5.44) holds for all δ ∈ S \ C ′ by induction it follows then that x?k(C ′) =

x?k(S) for all k ∈ {0, . . . , `}.

To show (5.44) assume for the sake of contradiction that there exist a δ̄ ∈ S \C ′

and a k ∈ {0, . . . , `} such that x?k(C) 6= x?k(C ′ ∪ {δ̄}). Let k̄ be the smallest index

such that this occurs and note that

x?k̄(C
′) = z?(C ′ \ ∪k̄−1

j=0supp(x?j(C ′))), (5.45)

x?k̄(C
′ ∪ {δ̄}) = z?((C ′ \ ∪k̄−1

j=0supp(x?j(C ′)) ∪ {δ̄}), (5.46)

which implies that δ̄ ∈ supp(x?
k̄
(C ′ ∪ {δ̄})), as removal of δ̄ will change x?

k̄
(C ′ ∪ {δ̄})

to x?
k̄
(C ′). By Assumption 12 and since supp(x?j(C ′)) = supp(x?j(C ′ ∪ {δ̄})) for all

j = 0, . . . , k̄ − 1, we have that for all J ⊂ C ′ \
(
∪k̄−1
j=0 supp(x?j(C ′)) ∪ {δ̄}

)
with

cardinality d,

g(z(J), δ̄) > 0. (5.47)

Hence, since J̄ = supp(x?`(C ′)) is a subset of cardinality d of C ′\
(
∪k̄−1
j=0 supp(x?j(C ′))∪

{δ̄}
)
, as these constraints have not been removed from C ′, we obtain that

g(z(J̄), δ̄) = g(x?`(C ′), δ̄) > 0, (5.48)

where the equality follows from (5.11). However, C ′ is assumed to be a compression

set for Ā, which implies that δ ∈ Ā(C ′), i.e., g(x?`(C ′), δ̄) ≤ 0. This is in

contradiction with (5.48), implying that x?k(C ′) = x?k(C ′ ∪ δ), for any k ∈ {0, . . . , `},

for any δ ∈ S \C ′. Using induction, adding one by one δ ∈ S \C ′, we can then show

that x?k(C ′) = x?k(S) = x?k(C) for all k ∈ {0, . . . , `}, thus showing that C in (5.20)

is the unique compression set for the mapping defined in (5.42).

By Theorem 1, we then have that

Pm{S ∈ ∆m : P{δ : δ /∈ Ā(C)} > ε} = Pm{S ∈ ∆m : P{δ : g(x?`(C), δ) > 0} > ε}

= Pm{S ∈ ∆m : P{δ : g(x?`(S), δ) > 0} > ε} =
r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i, (5.49)
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where the first equality follows since the union of support scenarios is a discrete set

and will be of measure zero, since the problems are assumed to be fully-supported,

and hence non-degenerate. To obtain the second equality we have used the fact

that x?`(C) = x?`(S) for the compression set defined in (5.20). This concludes the

proof of Theorem 9.

5.5.2 An example with an analytic solution

We revisit the problem studied in [28], [30] and show that it satisfies Assumption 12.

We compute analytically the violation probability of the solution returned by

applying the scheme of Figure 5.1 to this problem and show that the resulting

violation probability is in line with the result of Theorem 9.

To this end, fix m ∈ N and r < m, and consider the procedure of Section 5.3,

which involves a sequence of ` + 1 problems. For k = 0, . . . , `, each of them in

the form of Pk, and is given by

minimise
x∈[0,1]

x

subject to x ≥ δi, i ∈ S \ ∪k−1
j=0Rj(S). (5.50)

We further assume that all samples are extracted from a uniform distribution over

the interval [0, 1]. Note that (5.50) satisfies Assumptions 9 and 10. Also notice

that Assumption 4 is satisfied for this problem, as x?k = maxi∈S\∪k−1
j=0Rj(S) δi, i.e.,

the maximum among the scenarios available at stage k of the discarding process.

Under the choice of a uniform distribution, the support set is a singleton, i.e.,

the maximizing scenario is unique, with Pm-probability one. Therefore, once the

single support scenario is removed, the new minimizer will necessarily be lower thus

violating the removed scenario. Note that since this is an one-dimensional problem

(d = 1), our procedure involves removing samples one by one.

Let ε ∈ (0, 1) and r = `d = ` < m (since this is an one-dimensional problem),

and consider the sets:

B = {S ∈ ∆m : x?(S) < 1− ε}, (5.51)
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which represents the measure of samples such that the probability of constraint

violation is greater that ε, as P{δ ∈ ∆ : x?(S) < δ} = 1 − x?(S) due to the fact

that P is uniform on [0, 1]. Moreover,

A0 = {S ∈ ∆m : for all i = 1, . . . ,m, δi ≤ 1− ε}, (5.52)

and for all ` = 1, . . . ,m,

Ai = {S ∈ ∆m : there exist exactly

i samples greater than 1− ε}. (5.53)

Observe that {Ai}mi=0 forms a partition of ∆m, and notice that

Pm{A0} = Pm{S ∈ ∆m : δi ≤ 1− ε, for all

i = 1, . . . ,m} = (1− ε)m, (5.54)

where the last equality is due to sample independence. Since Pm{δi ∈ ∆ : δi >

1− ε} = ε (due to the fact that P is uniform on [0, 1]) and Ai involves i independent

samples, we have that

Pm{Ai} =
(
m

i

)
εi, (5.55)

where the factor
(
m
i

)
accounts for all combinations of i out of m samples. Moreover,

for i ≤ r, Pm{B|Ai} = (1− ε)m−i since it involves conditioning on exactly i samples

being removed, and computing the probability that the returned solution x?(S)

is feasible for the remaining m − i samples. By the total law of probability,

we then have that

Pm{S ∈ ∆m : x?(S) < 1− ε} = Pm{B} =
m∑
i=0

Pm{Ai ∩B}

=
r∑
i=0

Pm{Ai ∩B}+
m∑

i=r+1
Pm{Ai ∩B}. (5.56)
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Figure 5.4: Feasibility sets of the intermediate problems Pk, k = 0, 2, 5, 7, 10, for the
scheme proposed in Figure 5.1 when applied to (5.58). The optimal solution of each
problem is denoted by x?k(S), k = 0, 2, 5, 7, 10.

The terms involving i > r are zero because (δ1, . . . , δm) ∈ B implies that at most r

of samples are greater than 1 − ε, i.e., Pm{B|Ai} = 0, for all i > r. Hence,

Pm{S ∈ ∆m : x?(S) < 1− ε} =
r∑
i=0

Pm{Ai ∩B}

=
r∑
i=0

Pm{B|Ai}Pm{Ai} =
r∑
i=0

(
m

i

)
εi(1− ε)m−i, (5.57)

where the last equality follows from (5.54) and (5.55). Note that this result coincides

with the bound of Theorem 9.

5.6 Numerical example

In this section, we consider a resource allocation problem to illustrate our theoretical

result. Suppose that a manufacturer produces a good in d different locations, and

that this good can be produced from n different resources. The quantity of resource

p, p = 1, . . . , n, that is needed to produce a unitary amount of the given good

at facility j, j = 1, . . . , d, is a random variable parametrized by δ ∈ R, and is

denoted by apj(δ). We assume that the amount of resources p available to all
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facilities is deterministic. The objective is to maximize the production, given by∑d
j=1 x

j, where xj is the j−th component of x ∈ Rd, while keeping the risk of

running out of resources under control.

Under the scenario theory we do not have access to the distribution that

generates apj(δ), p = 1, . . . , n, j = 1, . . . , d; however, we encode it by means of data

(apj(δi))mi=1 for all p = 1, . . . , n and for all j = 1, . . . , d, and solve the following

convex scenario problem

minimise
{xj≥0}d

j=1

c>x

subject to A(δi)x ≤ b, for all i = 1, . . . ,m, (5.58)

where, for each i ∈ {1, . . . ,m}, A(δi) ∈ Rn×d is a matrix whose (p, j)-th entry is

given by apj(δi), b ∈ Rn is a vector whose p−th component is the amount of resource

p available to all facilities, and c =
[
−1 . . . −1

]>
∈ Rd.

Set d = 2 and consider 2000 scenarios from the unknown distribution1 for

δ. We study the behavior of the scheme in Figure 5.1 when we discard r = 20

of these scenarios. In this case, note that according to the description given in

Section 5.3, we have to solve a cascade of 11 optimisation problems (i.e, ` = 10

in the scheme of Figure 5.1).

Figure 5.4 illustrates the feasible set for stages k = 0, 2, 5, 7, and 10 of the

scheme of Figure 5.1, and depicts the corresponding optimal solution for each

Pk as x?k(S). Note that the feasible set associated to each problem Pk grows as

we remove scenarios. To complement this analysis, we also show in Figure 5.5

a comparison between our method and the greedy scenario removal strategy as

described in [30], which removes scenarios one by one according to one that yields the

best improvement in the cost. With the blue dots we show the cost obtained by the

proposed procedure, where we are allowed to remove scenarios in batches of d = 2,

while the solid one shows the performance obtained by the greedy removal strategy,
1For our simulations, fix i ∈ {1, . . . ,m} and generate an auxiliary matrix, B(δi) ∈ Rn×d, whose

entries are obtained from a Laplacian distribution with mean equal to one and variance equal to
three. Then set A(δi) = 0.04B(δi). Our numerical results were obtained setting the “seed” equal
to 30 in Matlab.
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Figure 5.5: Cost and probability of constraint violation for the solution returned by the
scheme of Figure 5.1 and a greedy removal strategy for the problem in (5.58) when d = 2,
n = 2, and m = 2000. With the blue dots we show the cost obtained by the proposed
procedure, where we are allowed to remove scenarios in batches of d = 2, while the solid
one shows the performance obtained by the greedy removal strategy where scenarios are
removed one by one. In red we show the corresponding behavior of the probability of
constraint violation. This is calculated from the bounds of Theorem 4 and Theorem 1,
respectively, using numerical inversion and β = 1× 10−6.

where scenarios are removed one by one. In red we show the corresponding behavior

of the probability of constraint violation. This is calculated from the bounds of

Theorem 7 and Theorem 6, respectively, using numerical inversion and β = 1×10−6.

Consider now (5.58) with d = 10 and the same 2000 scenarios. We compare the

cost improvement of the proposed bound (Theorem 8) with the one of Theorem 6 [30].

To this end, for a given ε ∈ [0.01, 0.08], we compute the maximum number of

scenarios that can be removed using each of these bounds. Note that due to the fact

that we remove scenarios is batches of d, we compute the number of scenarios that

need to be removed by means of numerical inversion from the bound of Theorem 4

(using m = 2000, β = 1× 10−6 and the given ε), and round it down to the closest

multiple of d = 10. For instance, for ε = 0.03 the maximum number of scenarios that

can be removed using the bound in (8) is r = 18, but we only remove 10. Figure 5.6

shows then the relative cost difference 100 × f?(ε)−f̄?(ε)
f̄?(ε) as a function of ε, where

f ?(ε) is the optimal value of problem (5.58) when scenarios are removed according
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Figure 5.6: Relative cost improvement 100× f?(ε)−f̄?(ε)
f̄?(ε) , as a function of ε, where f?(ε)

corresponds to the cost associated with Theorem 8, and f̄?(ε) to the one of Theorem 6, [30].
The numerical results correspond to (5.58) with d = 10.

to Theorem 8, and f̄ ?(ε) correspond to the bound in [30]. Note that for ε ≥ 0.03

our scheme results in an improvement in performance achieving approximately 4%

improvement when ε = 0.08. This is due to the fact that more scenarios can be

removed, while guaranteeing the same level of violation. Notice also that there is

no improvement when ε ≤ 0.03. This is due to the limitation on the number of

removed scenarios, as for ε ∈ [0.01, 0.03] the proposed bound returns a value for

r that is less than 10, hence no scenarios are removed.

Note that the computational requirements of the proposed approach are lower

with respect to the greedy removal strategy of [30] (see also [22]). To put this in

perspective, to remove 100 scenarios in the previous example when d = 10, the

greedy strategy, as described in [30], requires the solution of 1101 optimisation

problems of the form (5.58), whereas the proposed scheme only needs to solve

11 of these problems. The computational savings are more pronounced as the

dimension of the problem grows.

Remark 5. Note that Theorem 8 offers an improvement with respect to Theo-

rem 6, [22], [30], as far as probabilistic guarantees on the probability of constraint

violation are concerned. However, the effect of the proposed discarding scheme with
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respect to the greedy removal strategy of [22], [30], does not necessarily follow the

one of Figure 5.6, but is problem dependent.

5.7 Conclusion

In this chapter we have addressed the third challenge stated in Chapter 1, namely,

we have studied optimisation problems with uncertain constraints. We revisited the

sampling and discarding approach for scenario based optimisation and proposed

a scenario discarding scheme that consists of a cascade of optimisation problems,

where at each stage we remove a superset of the support constraints. By relying

on results from compression learning theory, we provided a tighter bound on the

probability of constraint violation of the obtained solution, extending state-of-

the-art bounds. Besides, we have shown that the proposed bound is tight, and

characterized the class of problems for which this is the case.

The main limitation of the results of this chapter is that we require the number

of removed scenarios to be an integer multiple of the dimension of the decision space.

In the next chapter we extend the analysis of the removal scheme proposed in this

chapter to account for the case where the number of removed scenarios is arbitrary.



6
Extension to the case of an arbitrary

number of removed scenarios

In this chapter we continue our study on optimisation problems in the presence

of uncertain constraints under the lens of the scenario approach theory. More

specifically, we extend the analysis of the removal scheme proposed in Chapter 5

for the class of fully-supported scenario programs to the case where an arbitrary

number of scenarios is removed, i.e., without requiring the number of discarded

scenarios to be a multiple of the dimension of the decision space.

6.1 Introduction

Data abound in modern applications, and this can be leveraged to boost robustness

against uncertainty. In the past decades, new research directions have sprung from

this fact, and are now shaping the theoretical foundation of several disciplines,

including control theory and machine learning. Under this scenario, several data-

driven algorithms, such as the scenario approach theory, came to prominence.

Chapter 5 has studied a specific removal scheme and provided a bound on the

probability of constraint violation that outperforms the one in [30]. It also shows

tightness of the proposed bound by providing a class of scenario programs that

achieves this bound with equality. The removal scheme analysed in Chapter 5

117
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is composed by a cascade of scenario programs where at each stage a superset

of the support scenarios associated to the optimal solution is removed. However,

their analysis restricts the number of discarded scenarios to be a multiple of the

dimension of the corresponding scenario program.

This chapter explores the extent to which the analysis of this particular removal

scheme can be generalised to allow for arbitrary discarded scenarios. First, we

characterise the class of scenario programs that permits such arbitrary removal

without introducing additional conservatism in the feasibility bound. We show

that this coincides with the class of problems that led to tight bounds in Chapter

5. For general scenario programs, we propose a more conservative feasibility

bound which, however, improves upon the bound in [30]. Moreover, if we are

dealing with a min-max scenario program, we also discuss an alternative removal

algorithm that combines removal procedure proposed in Chapter 5 with the strategy

presented in [35] and [57].

This chapter is organised as follows. In Section 6.2, we briefly review the

removal procedure studied in Chapter 5. The extension of the results of Chapter

5 to an arbitrary number of discarded scenarios is presented in Section 6.3. In

Subsection 6.3.1 we study such a generalisation for a subclass of fully-supported

scenario programs, while in 6.3.2 we provide a more conservative bound that is

valid to any fully-supported scenario programs. In the latter subsection, we also

consider an adaptation of our procedure to min-max scenario programs. Section

6.4 summarises the results of this chapter. The proofs of some of the results of

Section 6.3 are presented in Section 6.5.

6.2 Review of the removal procedure of Chapter 5

We deal with the sampling-and-discarding approach to scenario optimisation

and the removal scheme proposed in Chapter 5. To this end, we consider the

scenario program

minimise
x∈X

c>x

subject to g(x, δi) ≤ 0, for all δi ∈ S \R(S),
(6.1)
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where the quantities involved in this problem have been defined in Section 5.2,

with the samples S = {δ1, . . . , δm} being independently sampled from the unknown

probability distribution P. Throughout this chapter we consider the following

assumption on (6.1).

Assumption 13. Problem (6.1) is fully-supported1 and its solution exists and is

unique for any {δ1, . . . , δm}. Moreover, its feasible set has a non-empty interior.

We also consider that the samples in S are ordered, i.e., there exists a bijection

σ : {1, . . . ,m} → S, and, for any i, j ∈ {1, . . . ,m}, i 6= j, we say that δi is

smaller than or equal to δj whenever σ−1(δi) ≤ σ−1(δj) in the usual sense. Strict

inequalities can be used with a similar interpretation. For a fixed S = {δ1, . . . , δm},

as in Chapter 5, we denote the optimal solution of a scenario program as in

(6.1) for a generic J ⊂ S as

z?(J) = argmin
x∈X

c>x

subject to g(x, δ) ≤ 0, for all δ ∈ J. (6.2)

The samples R(S) in (6.1) can be discarded through the procedure described in

Chapter 5, which is now reviewed for convenience. Let r < m be the number of

discarded constraints and write r = q1d + q2 using the division algorithm, where

q1 and q2 are integers and q2 < d. For k ∈ {0, . . . , q1}, consider the sequence

of q1 + 1 scenario programs given by

Pk : minimise
x∈X

c>x

subject to g(x, δ) ≤ 0, for all δ ∈ S \Rk(S), (6.3)

where R0(S) is the empty set, Rk(S) = Rk−1(S)∪ supp(x?k−1(S)) for k ∈ {1, . . . , q1},

with x?k(S), k = 0, . . . , q1, representing2 the optimal solution of (6.3). If q2 is

not equal to zero, we define similarly a scenario program Pq1+1 with Rq1+1(S) =
1Most of the results in this chapter can be extended to non-fully-supported but non-degenerate

problems (see [29] for the definition) using the same technique as in Section 5.3.2 of Chapter 5 (see
also [22] and [124]), by ordering the samples and creating an augmented (regularised) optimisation
problem.

2Note that q1 here plays the role of ` in Chapter 5.
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Pk Removed till k ∈ {0, . . . , q1} Optimiser at (k + 1)-th stage
0 R0(S) = ∅ x?0(S)
1 R1(S) = supp(x?0(S)) x?1(S)
... ... ...
q1 Rq1(S) = Rq1−1(S) ∪ supp(x?q1−1(S)) x?q1(S)

q1 + 1 Rq1(S) ∪ R̄(S) x?q1+1(S)

Table 6.1: Description of the quantities at the interim stages for the procedure encoded
by (6.3).

Rq1(S) ∪ R̄(S), where R̄(S) is a subset of size q2 from supp(x?q1(S)) containing

the q2-th smallest scenarios according to ordering defined by σ. As the scenario

program Pk depends on the solution of the previous stage through Rk(S), this

removal scheme can be interpreted as a cascade of q1 + 2 (or q1 + 1, if q2 is equal

to zero) scenarios programs where at each stage the support set associated to the

optimal solution is removed and possibly a subset of the support set in the last

stage if k = q1 and q2 6= 0. These quantities are summarised in Table 6.1. Let

x?(S) =
{
x?q1(S), if q2 = 0;
x?q1+1(S), if otherwise . (6.4)

Observe that x?(S) is the final decision whose probability of constraint violation

we are ultimately interested in.

If q2 = 0, i.e., if the removed scenarios form an integer multiple of d (r = q1d),

then the results in Chapter 5 allow assessing the probability of constraint violation

of x?(S). Recall also that Chapter 5 shows tightness of the bound by means of

a class of problems that, roughly speaking, requires removed constraints to be

violated by the optimal solution of any scenario program whose constraint are

enforced using remaining scenarios. Indeed, Chapter 5 imposes Assumption 14,

which is presented in the sequel for convenience.

Assumption 14. Let S = {δ1, . . . , δm} be i.i.d. samples from the unknown

probability distribution P and let C ⊂ S be any subset of S. For any k ∈ {0, . . . , q1}

if δ ∈ supp(x?k(C)), then we have that

g(z?(J), δ) > 0, for all J ⊂ C \ (∪k−1
j=0supp(x?j(C)) ∪ {δ}).
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6.3 Main results

Throughout this section we will explore the removal strategy described by (6.3)

when the number of discarded scenarios is not an integer multiple of the dimension

of the optimisation problem, i.e., when q2 6= 0. We first show that this is not a

straightforward generalisation of the analysis presented in Chapter 5, as it entails

certain difficulties. To this end, consider two realisations of a 2-dimensional (d = 2)

scenario program as depicted in Figure 6.1. In both of these realisations our goal is

to remove three of the six samples, i.e., we have q1 = 1 and q2 = 1.

We focus first on the realisation shown in Figure 6.1a. Following the procedure

described in (6.3), the 1st stage removes the scenarios highlighted in blue, as

these compose the support set of x?0(S). To remove the third scenario we solve

the corresponding scenario program without the scenarios highlighted in blue and

obtain x?1(S) as the optimal solution. Assume that the ordering (as detailed in

Section 6.2) is such that the scenario highlighted in red is discarded, then we obtain

the solution depicted in x?(S). For this realisation, the set composed by the two

blue scenarios, the red scenario, and the support set of x?(S) constitutes a subset

of the samples with cardinality equal to r + d = 3 + 2 = 5 such that following the

same procedure using only these 5 samples we would obtain the same solutions.

Informally, this is related to the notion of compression set introduced in Section 2.4,

Chapter 2. Unfortunately, this conclusion is sample dependent and does not hold

uniformly across all the samples. For instance, consider the realisation illustrated

in Figure 6.1b. The removal algorithm described in (6.3) proceeds similarly as in

the previous case; however, we notice that the final decision is supported by two

scenarios that do not belong to the support set of the previous iteration. This latter

fact implies that the cardinality of the subset of the samples that would lead to the

same solutions with those that would have been obtained if all the samples were

employed is no longer 5 but 6. The difference between these two instances is that

in the first one the support sets associated to the two last stages overlap, while

in the second one these are disjoint. Moreover, the smaller the cardinality of the

corresponding compression set, the tighter the bound one can offer. In view of a
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(a) Overlapping support sets.

(b) Disjoint support sets.

Figure 6.1: Two different realisations (6.1a and 6.1b) of a two dimensional (d = 2)
scenario program with six scenarios (m = 6) from which three scenarios are discarded
(r = 3). The scenarios highlighted in blue represent the support set of the 1st stage of
the removal procedure, and the ones in red the scenarios removed in the 2nd stage. In
realisation 6.1a the scenario that has not been removed in the 2nd stage belongs to the
support set of x?(S), which is the optimal solution of the 3rd stage, while in the realisation
in 6.1b none of the remaining scenarios from the 2nd stage belong to the support set of
x?(S).
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tight bound, this observation motivates restricting attention to the class of problems

where the one of Figure 6.1a belongs. We formalise this in the next section.

6.3.1 Arbitrary number of removed scenarios under As-
sumption 14.

Inspired by the discussion in the previous section, the most natural direction if

one wants to produce a tight bound on the resulting decision is that of preventing

the situation of Figure 6.1b to happen. The main result of this section is to

reveal that this can be obtained by means of the Assumption 14, which has

been exploited in Chapter 5 to obtain Theorem 9. To this end, the following

proposition is instrumental.

Proposition 10. Consider the removal procedure encoded by (6.3). Let S ∈

{δ1, . . . , δm} be i.i.d. samples from the unknown probability distribution P, and

r = q1d + q2, with 0 < q2 < d. Under Assumptions 13 and 14, if δ is a

scenario in supp(x?q1(S)) that has not been removed in the (q1 + 1)-th stage, i.e.,

δ ∈ supp(x?q1(S)) \ R̄(S), then δ is in the support set of supp(x?(S)).

Proof. Consider the Pq1+1 that would arise if q2 6= 0 and recall that, by (6.4)

, x?(S) = x?q1+1(S). Recall also that Rq1+1(S) = Rq1(S) ∪ R̄(S), where R̄(S)

contains the q2-th smallest scenarios of supp(x?q1(S)) that will be removed at the

(q1 + 1)-th stage. With this in mind, let us prove this proposition by contradiction.

Suppose there exists δ̄ ∈ supp(x?q1(S)) \ R̄(S) that is not of support for x?(S).

Such a δ̄ is feasible for problem Pq1+1, i.e., we must have that g(x?(S), δ̄) ≤ 0. Choose

J̄ = supp(x?(S)) ⊂ S \{Rq1(S)∪{δ̄}} (due to the fact that δ̄ /∈ supp(x?(S))), which

then implies that z?(J̄) = x?(S) and g(z?(J̄), δ̄) ≤ 0. Under Assumption 14, with

k = q1 and since Rq1(S) = ∪q1−1
j=0 supp(x?j(S)), the latter is a contradiction, since

this would require g(z?(J), δ̄) > 0. This concludes the proof of the proposition.

In other words, Proposition 10 shows that under Assumption 14 the realisation

of Figure 6.1b can only happen with probability zero. Proposition 10 will be used

as the main step to extend the results of Chapter 5 for the subclass of scenario
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programs that satisfy Assumptions 13 and 14. To achieve this, we leverage the

results presented in Section 2.4, Chapter 2, by relying on the concept of compression

to establish a probably approximately correct (PAC) bound on the probability

of constraint violation as in Theorem 1.

In the sequel, we identify, under Assumption 14, how the analysis carried in

Chapter 5 can be extended to encompass an arbitrary number of discarded scenarios.

We consider the removal strategy described in the previous section. Since all the

intermediate problems are fully-supported we remove at each stage the associated

support set and in the (q1 + 1)-th stage only a subset of the support set is removed,

if q2 is not zero. Define A : ∆m → 2∆ as

A(C) = {δ ∈ ∆ : g(x?(C), δ) ≤ 0} ∪

q1−1⋃
j=0

supp(x?j(C)) ∪
⋃

δ∈R̄(C)
δ

 , (6.5)

which contains the discarded scenarios in the discrete set, and the set we are

ultimately interested in, namely, the set {δ ∈ ∆ : g(x?(C), δ) ≤ 0}. Following the

algorithmic description presented in (6.3) a candidate compression set is given by

C =
q1⋃
j=0

supp(x?j(S)) ∪ supp(x?(S)), (6.6)

as it contains, under Assumption 13, all the support sets associated to the scenario

programs Pk, k ∈ {0, . . . , q1 + 1} (due to the fact that q2 6= 0 and Proposi-

tion 10 holds).

Remark 6. By Proposition 10, we have that supp(x?q1(S))∪ supp(x?(S)) = R̄(S)∪

supp(x?(S)), as any δ ∈ supp(x?q1(S)) but not in R̄(S) will be in supp(x?(S)). As

such, |C| = r + d as opposed to (q1 + 2)d.

Proposition 11. Consider the removal procedure described by (6.3). Under

Assumptions 13 and 14, the set in (6.6) is the unique compression set of size

r + d associated to the mapping (6.5).

Proof. We first prove that (6.6) is the unique compression for (6.5) assuming that

x?k(C) = x?k(S), for k ∈ {0, . . . , q1 + 1}.
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We start by showing that C is a compression for (6.5). Let δ̄ be any scenario in

S, we need to show that δ̄ ∈ A(C). Note that such a δ̄ either belongs to the discrete

part of (6.6), or is feasible to the problem Pq1+1. In the former case, δ̄ is in (6.6)

by definition. In the latter case, it is also in A(C) since all these scenarios are in

{δ : g(x?(S), δ) ≤ 0} (since x?(S) = x?(C)). This shows that (6.6) is a compression

set for (6.5).

Before we proceed to the uniqueness proof, note that |C| = r + d by Remark

6. With this in mind, let C ′, C ′ 6= C, be another compression of cardinality

equal to r + d for the mapping in (6.5). Let k̄ be the minimum k for which

x?k(S) = x?k(C) 6= x?k(C ′). Pick δ̄ ∈ supp(x?
k̄
(S)) \ supp(x?

k̄
(C ′)) such that δ̄ ∈ C \C ′,

such a δ̄ exists as otherwise we would contradict the fact that x?
k̄
(S) 6= x?

k̄
(C ′). A

similar argument has been used in the proof of Proposition 9, item ii), in Chapter 5,

inspired by Lemma 2.12 of [22]. Hence, due to the fact that δ̄ /∈ C \C ′ we have that

δ̄ /∈ supp(x?k(C ′)), for all k ∈ {0, . . . , q1 + 1}, and in particular δ̄ /∈ supp(x?(C ′)).

Notice that J̄ = supp(x?(C ′)) ⊂ C ′ \{⋃k̄−1
j=0 supp(x?j(S))∪{δ̄}} since x?k(S) = x?k(C ′)

for all k ∈ {0, . . . , k̄ − 1}. As a consequence, by Assumption 14 this would imply

that g(z?(J̄), δ̄) = g(x?(C ′), δ̄) > 0 (recall that z?(J̄) = x?(C ′)), which contradicts

the fact that δ̄ ∈ A(C ′).

To conclude the proof, it remains to be shown that x?k(S) = x?k(C) for any

k ∈ {0, . . . , q1 + 1}. This can be done by induction. For k = 0, note that

x?0(S) = x?0(C) since supp(x?0(S)) ⊂ C. Suppose x?k(C) = x?k(S) for all k ∈

{0, . . . , k̄}, and consider x?
k̄+1(S). Since Rk̄+1(C) = Rk̄(C) ∪ supp(x?

k̄
(S)) and

Rk̄(C) = Rk̄(S) and supp(x?
k̄
(S)) = supp(x?

k̄
(C)) by the induction hypothesis,

we have that supp(x?
k̄+1(S)) ⊂ C \Rk̄+1(S), so x?

k̄+1(S) = x?
k̄+1(C). This shows that

x?k(S) = x?k(C) for all k ∈ {0, . . . , q1}. In the last stage, where only a subset of the

support scenarios is discarded, we can use a similar argument. In fact, as consequence

of the fact that supp(x?q1(S)) = supp(x?q1(C)) we have that R̄(S) = R̄(C). However,

this implies that Rq1+1(C) = Rq1+1(S) and then x?q1+1(C) = x?q1+1(S). This

concludes the proof of the proposition.

The next theorem follows from Proposition 11 and Theorem 1, Chapter 2.
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Theorem 10. Consider the removal scheme encoded by (6.3) and suppose Assump-

tions 13 and 14 hold. Let S = {δ1, . . . , δm} be i.i.d. samples from the unknown

distribution P, r < m be the number of discarded scenarios, and ε ∈ (0, 1) be given.

Write r = q1d+ q2 and denote as x?(S) as in (6.4). Then we have that

Pm{S ∈ ∆m : P{δ ∈ ∆ : g(x?(S), δ)} > ε} =
r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i. (6.7)

Proof. The result for q2 = 0 has been proved in Theorem 7, Chapter 5. If q2 6= 0,

then we have by Proposition 11 that a unique compression set exists with cardinality

r + d. The right-hand side in (6.7) follows then mutatis mutandis from the proof

of Theorem 7, Chapter 5, with the only difference that the cardinality of the

compression set is different.

6.3.2 Arbitrary number of removed scenarios without As-
sumption 14

In the previous section we have extended the analysis of the removal algorithm

proposed in Chapter 5 to a general number of discarded scenarios by relying on

Assumption 14. In this section, we indicate possible extensions of such procedure

without any further restriction on the underlying scenario program.

Indeed, the results in Section 6.3.1 rely on the fact that the cardinality of the

set (6.6) is equal to r + d (which is an immediate consequence of Proposition 10).

However, this requires imposing Assumption 14 which effectively guarantees that

realisations like the one Figure 6.1a occur with probability one. In this section we

drop Assumption 14 and consider the more general case situation where realisations

like the one of Figure 6.1b occur with non-zero probability. We provide a bound

on the probability of constraint violation and show that for such cases there is

no incentive in removing scenarios whose number is not an integer multiple of

the dimension of the decision space.

In the general case where the realisation of Figure 6.1b happens with non-zero

probability we cannot claim the bound of Theorem 10, as they can be no compression
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set of size equal to r + d. We can, however, establish a more conservative bound

on the probability of constraint violation, as described in the sequel.

Theorem 11. Suppose that Assumption 13 holds. Consider the removal scheme

described in (6.3). Let S = {δ1, . . . , δm} be i.i.d. samples from an unknown

distribution P and r be an integer such that m > dred + d, where dred is the

smallest multiple of d that is larger than r. For any ε ∈ (0, 1) we have that

Pm{S ∈ ∆m : P{δ ∈ ∆ : g(x?(S), δ) > 0} > ε} ≤
dred+d−1∑

i=0

(
m

i

)
εi(1− ε)m−i, (6.8)

Proof. See Section 6.5.1 .

The proof of Theorem 11 follows closely the ones of Theorems 7 and 8 in

Chapter 5 and the proof of Theorem 10 in this chapter, i.e., creating a specific

mapping that involves the probability of constraint violation and showing that

there exists a unique compression set of cardinality equal to dred + d associated

to such a mapping. Implicitly, Theorem 11 states that tight results can only be

achieved for general scenario programs if scenarios are removed in multiple of the

dimension of the optimisation problem.

6.3.3 Min-max scenario programs

We can now consider the class of min-max scenario programs. Let f : X ×

∆ → R be a function, where X and ∆ are defined as before. Assume f(·, δ) is

convex for all δ ∈ ∆. Given m samples S = {δ1, . . . , δm}, we want to solve the

following min-max scenario program

min
x∈X

max
δ∈S

f(x, δ), (6.9)

which can be cast, through an epigraphic reformulation, as the following sce-

nario program

minimise
(x,t)∈X×R

t

subject to f(x, δ) ≤ t, for all δ ∈ S. (6.10)
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Figure 6.2: Alternative removal scheme suitable for min-max scenario programs with
guaranteed bounds on the probability of constraint violation. We first remove scenarios
by removing the support set, and then improve the cost at the last stage by moving
downwards, if necessary. The blue and red scenarios correspond to first and second stages
of the removal procedure. The dashed-red line defines v1(S).

Consider the following removal scheme, which is inspired by the results in [35]

and [57] where the empirical cost for min-max scenario programs is characterised.

For a given positive integer r such that m > r+ d+ 1 we proceed similarly as in the

procedure described by (6.3), i.e., writing r = q1(d+ 1) + q2 and removing q1(d+ 1)

scenarios by means of a cascade of scenarios programs in which the support set is

removed at each stage. However, at the (q1 + 1)-th stage, rather than choosing a

subset of size q2 from supp((x?q1(S), t?q1(S))) to be discarded we compute the quantity

vi(S) = t?q1(S)− f(x?q1(S), δi), for all δi ∈ S \ {Rq1(S) ∪ supp((x?q1(S), t?q1(S)))},

(6.11)

where (x?k(S), t?k(S)), k ∈ {0, . . . , q1}, is the optimal solution of the scenario program

(6.10), treated as a particular instance of the scenario program (6.3). It is important

to notice that each vi(S) is related to the vertical distance between t?q1(S) and the

intersection of the constraint generated by the i-th scenario with the vertical line

that passes through x?q1(S) (see Figure 6.2 for an illustration). We then pick the

q2-th smallest vi(S) and denote them as v(1)(S) < v(2)(S) < . . . < v(q2)(S). The
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q2-th layer probability of constraint violation associated to the optimal solution of

(6.10) is then given by (denoting x?q1(S) = x?(S) and t?q1(S) = t?(S))

Vq2(S) = P{δ ∈ ∆ : f(x?(S), δ) > t?(S)− v(q2)(S)}, (6.12)

which constitutes the probability that an unseen sample has a cost greater than

t?(S) − v(q2)(S). An illustration of this procedure for d = 1, r = 3, and m = 9 is

depicted in Figure 6.2. Under this setting, we can state the following theorem.

Theorem 12. Consider the removal scheme described in this section and let Vq2(S)

be defined as in (6.12). Let S = {δ1, . . . , δm} be i.i.d. samples from an unknown

distribution P and r be an integer such that m > r + d. If the min-max scenario

program (6.9) admits a unique solution, then for any ε ∈ (0, 1) we have that

Pm{S ∈ ∆m : Vq2(S) > ε} ≤
r+d−1∑
i=0

(
m

i

)
εi(1− ε)m−i.

Proof. See Section 6.5.2.

6.4 Conclusion

We have analysed how the removal procedure proposed in Chapter 5 yields tight

results on the probability of constraint violation when an arbitrary number of

scenarios are discarded, as opposed to being a multiple of the dimension of the

decision space.

We have shown that under Assumption 14 the constraint on the number of

removed scenarios can be lifted while providing a feasibility bound that is based on

a compression set of size r + d. However, more research is necessary to characterise

how large is the class of scenario programs satisfying Assumption 14. To overcome

such a shortcoming we proposed a more conservative bound that holds for all fully-

supported scenario program. There are two facets to such a bound. On the one hand

we show better feasibility guarantees for the resulting solution than the standard

sampling-and-discarding bound applied to the case where an arbitrary number
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of scenarios is discarded. On the other hand we highlight an inherent property

of the considered removal scheme, namely, the fact that removing a number of

scenarios that is not an integer multiple of the dimension of the decision space

introduces an additional conservatism in general.

Finally, we have also analysed the so-called min-max scenario programs by

combining the removal strategy proposed in Chapter 5 with the one presented

in [35] and [57].

6.5 Proofs of Chapter 6

6.5.1 Proof of Theorem 11

The proof of Theorem 11 is divided into two steps. We first study the probability

of constraint violation associated to the optimal solution of a scenario program for

which only a subset of its support scenarios is removed. Then we combine this

analysis with the removal scheme of Chapter 5 to produce the bound of Theorem 11.

Step 1: Removing a subset of the support scenarios

Consider a cascade of two scenario programs as in (6.1) where one is obtained from

the other by removing a subset of the support scenarios. Denote these scenario

programs by SC1 and SC2, respectively, to distinguish them from the Pk in the

removal procedure described in Section 6.2. Let SC1 be

SC1 : minimise
x∈X

c>x

subject to g(x, δ) ≤ 0, for all δ ∈ S. (6.13)

Denote by v?(S) the optimal solution of (6.13) and denote, as before, by supp(v?(S))

its support set. To define SC2, fix any 0 < q2 < d, and let M(S), with |M(S)| = q2,

be the subset of supp(v?(S)) containing the q2 smallest scenarios in supp(v?(S))

according to the order <σ . Then, let SC2 be

SC2 : minimise
x∈X

c>x

subject to g(x, δ) ≤ 0, for all δ ∈ S \M(S). (6.14)
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We denote the optimal solution of (6.14) by w?(S) and its support set by supp(w?(S)).

To analyse the probability of constraint violation properties associated with w?(S),

we first define for an arbitrary set of samples C ⊂ S the set N(C) contain-

ing the |supp(v?(C)) ∩ supp(w?(C))| smallest scenarios from C \ {supp(v?(C)) ∪

supp(w?(C))}.

The reader may refer to Figure 6.1 for a motivation to the definitions of SC1 and

SC2. In a comparison with the notation of Figure 6.1 we have that v?(S) = x?0(S)

and w?(S) = x?(S) (i.e., SC1 plays the role of P0 and SC2 that of P1); hence

|supp(v?(C))∩supp(w?(C))| is equal to the number of scenarios that belong to both

support sets of SC1 and SC2, e.g., the scenarios are depicted in red in Figure 6.1.

To encompass the fact that the realization in Figure 6.1b may happen with non-zero

probability and to obtain a compression set with a cardinality that is uniform with

respect to possible realizations, we need to append additional scenarios by forming

the set N(C) above. We believe that introducing SC1, SC2 as well as their related

optimal solutions and support sets helps us to study the feasibility properties of a

scenario program when only a subset of the support set is removed.

Similarly as in the proof of Theorem 7, Chapter 5, we establish a guarantee on

the probability of constraint violation associated to w?(S) by showing that there

exists a compression scheme associated with such a removal procedure. To this

end, we introduce the mapping B : ∆m → 2∆

B(C) = {B1(C) ∩ B2(C) ∩ B3(C)} ∪
⋃

δ∈M(C)∪N(C)
δ, (6.15)

with B1(C) = {δ ∈ ∆ : g(v?(C), δ) ≤ 0}, B2(C) = {δ ∈ ∆ : g(w?(C), δ) ≤ 0}, and

B3(C) =
{
δ ∈ ∆ : δ ≥σ max

ξ∈N(C)
ξ
}
∪ supp(w?(C)).

Note that B1(C) ∩ B2(C) contains the scenarios that satisfy both of the interim

solutions v?(C) and w?(C), while B3(C) contains scenarios that are either larger

than or equal to the maximum scenario3 in N(C) or that are in supp(w?(S)). In
3Formally, the ordering σ−1 is only defined on the finite set S. However, given any finite set S

and under mild conditions on the uncertainty space ∆, one may extend σ−1 to the whole space ∆
in a way that its restriction to S is the original bijection.
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fact, the next proposition shows that

C = supp(v?(S)) ∪ supp(w?(S)) ∪
⋃

δj∈N(S)
δj (6.16)

is the unique compression of cardinality equal to 2d for (6.15).

Proposition 12. Let 0 < q2 < d be a given integer. Consider the cascade of two

scenarios programs SC1 and SC2 as in (6.13) and (6.14), respectively. Suppose that

the realization of Figure 6.1b happens with non-zero probability, i.e., suppose that,

for all m ∈ N, Pm{S ∈ ∆m : |supp(v?(S))∩ supp(w?(S))| = 0} > 0. Then, we have

that:

a) There exists a realization of scenarios S such that no compression of size

smaller than 2d exists for the mapping B in (6.15).

b) The set C in (6.16) is the unique compression set of cardinality 2d for the

mapping B in (6.15).

Remark 7. Proposition 12 establishes compression properties related to a removal

scheme that discards only a subset of the support scenarios of a scenario program,

i.e., the set M(C) above. A striking feature of this scheme is the fact that it may

not yield tight bounds on the probability of constraint violation associated to w?(C),

as we may not have a compression set of cardinality equal to d+ q2 < 2d.

Proof. Item a). We argue by contradiction. Let S ⊂ ∆ be a set with cardinality

m and assume that there exists a compression C ′ of cardinality d′ < 2d for the

mapping B in (6.15). Fix a realization S that yields N(S) = ∅, i.e., one in which

the support sets supp(v?(S)) and supp(w?(S)) are disjoint (e.g., see Figure 6.1b).

Note that such a realization exists by assumption. As the cardinality of C ′ is strictly

smaller than 2d we can find a scenario in {supp(v?(S)) ∪ supp(w?(S))} \ C ′, since

the union of the support sets has cardinality equal to 2d.

Let δ̄ be an element in {supp(v?(S)) ∪ supp(w?(S))} \ C ′. Such a δ̄ is either

in supp(v?(S)) \ C ′ or in supp(w?(S)) \ C ′. Assume that δ̄ ∈ supp(v?(S)) \ C ′,
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then the set supp(v?(S)) \ C ′ is non-empty. We next show that there exists a

δ̄ ∈ supp(v?(S)) \ C ′ such that g(v?(C ′), δ̄) > 0. Recall that by the definition of

a compression set we must have g(v?(C ′), δ) ≤ 0 for all δ ∈ S, so the existence of

such a δ̄ implies that supp(v?(S)) must be contained in C ′. To this end, suppose

for the sake of contradiction that g(v?(C ′), δ̄) ≤ 0 for all δ̄ ∈ supp(v?(S)) \C ′. This

means that v?(C ′) can be obtained by the following scenario program

minimise
x∈Rd

c>x

subject to g(x, δ) ≤ 0, for all δ ∈ C ′ ∪ supp(v?(S)),

as adding the scenarios in supp(v?(S)) \ C ′ does not change the optimal cost.

However, by the definition of support set and due to Assumption 13, this implies

that v?(C ′) = v?(S), which contradicts the fact that supp(v?(S)) \ C ′ is non-empty.

Hence, we must have g(v?(C ′), δ̄) > 0; however, this contradicts the fact that C ′ is a

compression set for the mapping B in (6.15). In other words, if C ′ is a compression

set of cardinality d then δ̄ ∈ supp(w?(S)) \ C ′.

Since supp(v?(S)) ⊂ C ′, we must have that v?(S) = v?(C ′) by Assumption 13,

which then implies M(S) = M(C ′). Changing S by S \ {supp(v?(S)) ∪M(S)} and

C ′ by C ′ \{supp(v?(S))∪M(S)} we can argue similarly as above to conclude that if

supp(w?(S)) \C ′ is not empty, then we can find an element in δ̄ ∈ supp(w?(S)) \C ′

such that g(w?(C ′), δ̄) > 0, which contradicts the fact that C ′ is a compression.

This concludes the proof of item a).

Item b). (Existence) We start the proof by showing that the set (6.16) is a

compression for the mapping B in (6.15). To this end, we need to show that

δ ∈ B(C) for all δ ∈ S. By the choice of C in (6.16) and under Assumption 1, we

note that v?(C) = v?(S) and w?(C) = w?(S), which then impliesM(C) = M(S) and

N(C) = N(S). Pick δ̄ ∈ C and let us show that δ̄ ∈ B(C). Suppose δ̄ ∈ supp(v?(C)).

In this case we have two options: (1) either δ̄ ∈M(S), which belongs to the discrete

part of B(C); or (2) δ̄ /∈ M(S), in which case it can be either in the support of

supp(w?(S)) or not. If δ̄ ∈ supp(w?(S)), then it belongs to B1(C) ∩ B2(C) ∩ B3(C).

The fact that such a δ̄ belongs to B1(C)∩B2(C) is clear due to g(v?(S), δ̄) ≤ 0 and
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g(w?(S), δ̄) ≤ 0, while δ̄ ∈ B3(C) follows by definition, since supp(w?(S)) ⊂ B3(C).

Otherwise, if δ̄ ∈ supp(v?(S)) \ supp(w?(S)) then it either belongs to N(S), which

then implies that δ̄ ∈ B(C), or δ̄ ∈ supp(v?(S)) \ {supp(w?(S)) ∪N(S)}, hence it

belongs to B1(C) ∩ B2(C) by definition, and to B3(C) due to the fact that such a δ̄

must satisfy δ̄ ≥σ maxξ∈N(S) ξ. This shows that δ ∈ B(C) for all δ ∈ supp(v?(C)).

Suppose now that δ̄ ∈ supp(w?(C)). It is straightforward to show that δ̄ ∈

B1(C) ∩ B2(C) ∩ B3(C) by means of similar arguments as above, so we have that

δ̄ ∈ B(C). Besides, if δ̄ ∈ N(C), then it belongs to the discrete part of B(C).

Therefore, in any case if δ̄ ∈ C, then δ̄ ∈ B(C).

To conclude the existence proof, we need to show that if δ̄ ∈ S\C then δ̄ ∈ B(C).

Since such a δ̄ is not in the discrete part of the mapping B(C), we need to show

that δ̄ ∈ B1(C) ∩ B2(C) ∩ B3(C). As this δ̄ is feasible for both scenarios programs

SC1 and SC2 we have that δ̄ ∈ B1(C) ∩ B2(C). It remains to show that δ̄ ∈ B3(C).

To this end, note that since δ̄ /∈ C we have immediately that δ̄ >σ maxξ∈N(S) ξ, so

it belongs to B3(C). This shows that C given in (6.16) is a compression set for the

mapping B in (6.15), thus concluding the existence part of the proof.

(Uniqueness) We divide the uniqueness proof into two cases: N(S) = ∅ and

N(S) 6= ∅. In the former case, let C ′ be another compression set of size 2d. Fix any

δ̄ ∈ C \ C ′ and note that either δ̄ ∈ supp(v?(C)) or δ̄ ∈ supp(w?(C)) (note that δ̄

cannot belong to both sets due to the fact that N(S) = N(C) = ∅ is empty). If

δ̄ ∈ supp(v?(S)) then a similar argument as in item a) (changing S by C in that

argument) shows that there exists a δ̄ ∈ C \ C ′ such that g(v?(C ′), δ̄) > 0, which

contradicts the fact that C ′ is a compression. A similar argument also holds for

δ̄ ∈ supp(w?(C)).

Consider now the case where N(S) 6= ∅. We proceed similarly as to the previous

case and let C ′ be another compression of size 2d. Fix any δ̄ ∈ C \ C ′ and note

that δ̄ cannot belong to supp(v?(C)) ∪ supp(w?(C)), as this would contradict, as

before, the fact that C ′ is a compression. Hence, such a δ̄ must be an element of

N(C) \C ′. Besides, since δ̄ /∈ C ′ and C ′ is a compression, we must have that δ̄ is in
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B1(C ′) ∩ B2(C ′) ∩ B3(C ′). However, δ̄ /∈ B3(C ′) as we have δ̄ <σ maxξ∈N(C′) ξ, due

to the fact that C ′ ⊂ S and δ̄ /∈ supp(w?(C ′)) ⊂ C ′, which imply that

max
ξ∈N(C′)

ξ > max
ξ∈N(C)=N(S)

ξ,

This contradicts the fact that C ′ is a compression, thus concluding the proof of

item b).

Step 2: Combining Proposition 12 with the results of Chapter 5

We are now in position to prove Theorem 11. Recall that d is the dimension of the

optimization problem Pk and we are writing r = q1d+ q2, with 0 < q2 < d, where

m > dred + d. Define the mapping Ā : ∆m → 2∆ such that

Ā(C) = A(C) ∩ {B(C \Rq1(C)) ∪Rq1(C)}, (6.17)

where A is the mapping given by

A(C) = (A1(C) ∩ A2(C)) ∪ A3(C), (6.18)

with, A1(C) = {δ ∈ ∆ : g(x?q1(S), δ) ≤ 0}, A3(C) = ⋃q1−1
k=0 supp(x?k(C)), and

A2(C) =

q1−1⋂
k=0

{
δ ∈ ∆ : c>z?(J ∪ {δ}) ≤ c>x?k(S), for all

J ⊂ S \Rk(S), with |J | = d− 1
}}

.

The mapping A is associated with the removal procedure encoded by (6.3) when

q2 = 0 and has been introduced in Chapter 5 (see also [124], [125]), and B is the

mapping of Proposition 12 with input given by S \ Rq1(S), rather than S. Note

also that under this choice for the input of B we have v?(S \Rq1(S)) = x?q1(S) and

w?(S \Rq1(S)) = x?q1+1(S) = x?(S) (see Section 6.2). In fact, under this notation,

the scenario programs SC1 and SC2 in Proposition 12 correspond to Pq1 and Pq1+1,

respectively, in the description of Section 6.2.
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We will show that the subset of the scenarios given by

C =
q1⋃
k=0

supp(x?k(S)) ∪ supp(x?(S)) ∪
⋃

j∈N(S)
δj (6.19)

is a compression set for the mapping Ā in (6.17) – uniqueness will be shown in

the sequel. First, note that such a C can be written as

C = C1 ∪ C2, C1 =
q1⋃
k=0

supp(x?k(S)),

C2 =supp(x?q1(S)) ∪ supp(x?(S)) ∪
⋃

δ∈N(S)
δ.

The fact that C in (6.19) forms a compression set for the mapping Ā follows trivially

since C1 and C2 are compression sets for the removal procedure encoded by (6.3)

due to 7 in Chapter 5 and Proposition 12, i.e., δ ∈ A(C)∩{B(C \Rq1(C))∪Rq1(C)}

for all δ ∈ S. Besides, observe that the cardinality of C is equal to (q1 + 2)d =

dq1d + q2ed + d = dred + d due to definition of set N(S) given in Proposition

12 and to the relation r = q1d + q2.

We now show that the set C in (6.19) is the unique compression set of cardinality

equal to dred + d for the mapping in (6.17). Suppose C ′ is another compression

set of cardinality equal to dred + d for Ā. This means that δ ∈ Ā(C ′) for all

δ ∈ S. However, by the results in Chapter 5, we must have C1 ⊂ C ′; otherwise,

there would exist another compression set of size (q1 + 1)d for the mapping A.

We also obtain that δ ∈ B(C ′) for all δ ∈ S. Since C ′ \ Rq1(S) ⊂ S \ Rq1(S), by

Proposition 12, we must also have that C2 ⊂ C. However, as the cardinality of

C1 ∪ C2 is equal to dred + d, this implies that C ′ = C, thus showing uniqueness

of the compression set C in (6.19).

It remains to show how the existence and uniqueness of a compression set for the

mapping Ā can be used to produce the bound of Theorem 11. To this end, recall

that (the dependence on C of the inner sets is omitted to simplify the notation)

Ā(C) = {(A1 ∩ A2) ∪ A3}︸ ︷︷ ︸
A(C)

∩{(B1 ∩ B2 ∩ B3) ∪ B4}︸ ︷︷ ︸
B(C\Rq1 (C))∪Rq1 (C)

,
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where we have defined B4 = Rq1 ∪
⋃
δ∈M∪N δ, which contains all the removed

scenarios and potentially additional scenarios that compose the set N(C) described

in Proposition 12. After some elementary manipulations, we can prove that

Ā(C) ⊂ (A1 ∩ A2 ∩ B1 ∩ B2 ∩ B3) ∪ (A3 ∪ B4)

= (A1 ∩ A2 ∩ B2 ∩ B3) ∪ (A3 ∪ B4), (6.20)

where the second equality holds due to the fact that x?q1(C) = v?(C \Rq1(C)), which

in turn implies that A1(C) = B1(C \Rq1(C)). Our ultimate goal is to bound the

probability of B2. We can then use (6.20) to obtain the relation

Pm{(δ1, . . . , δm) ∈ ∆m : P{δ /∈ B2(C \Rq1(C))} > ε}

≤ Pm{(δ1, . . . , δm) ∈ ∆m : P{δ /∈ Ā(C)} > ε}.

However, note that the left-hand side of the above inequality is the probability

of constraint violation we are interested in and the right-hand side can be upper

bounded by Theorem 3 in [94] and the fact that there exists a unique compression

set of size dred + d (as shown above), yielding the expression in the right-hand

side of (6.8). This concludes the proof of Theorem 11.

6.5.2 Proof of Theorem 12

As for the case of Theorem 11, we divide the proof of Theorem 12 into two steps.

The first step considers the removal procedure that improves the cost by moving

downwards in the direction of the epigraphic variable when 0 < r < d + 1, i.e.,

q1 = 0 and q2 = r. The second step of the proof combines the feasibility guarantee

obtained in the first step with Theorem 7 of Chapter 5.

Step 1: Moving downwards in the direction of the epigraphic variable

Assume that q1 = 0 and r = q2 < d+ 1. Consider the min-max scenario program

minimise
(x,t)∈X×R

t

subject to f(x, δ) ≤ t, for all δ ∈ S, (6.21)
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where t is the epigraphic variable, and let (x?(S), t?(S)) be its optimal solution

and supp((x?(S), t?(S))) be its support set. Define vi(S) and v(i) as described in

(6.11), and recall that v(i)(S), i = 1, . . . , |S| − (d + 1), is a monotonic sequence.

We are interested in the quantity Vq2(S) defined in (6.12) with (x?q1(S), t?q1(S)) =

(x?(S), t?(S)) (since q1 = 0), which constitutes the probability that an unseen

sample has a cost greater than t?(S) − v(q2)(S).

To produce bounds on the tail distribution of Vq2(S) we consider the mapping4

B : ∆m → 2∆ as

B(C) = {δ ∈ ∆ : f(x?(C), δ) ≤ t?(C)− v(r)(C)} ∪ C, (6.22)

which is the union of a discrete set containing the samples in C and the set of

scenarios δ that generates a constraint that intersects the vertical line passing

through x?(S) below the value given by t?(C) − v(r)(C). Our strategy is to

show that the set

C = supp((x?(S), t?(S))) ∪

r−1⋃
j=1

δ(j)

 , (6.23)

where δ(j) denotes the scenario that leads to the j-th largest vj(S), i.e., v(j)(S) =

t?(S)− f(x?(S), δ(j)), is the unique compression set of cardinality equal to d+ r

associated to the mapping B in (6.22). This is proved in the next proposition.

Proposition 13. Given a set of samples S = {δ1, . . . , δm}. Consider the removal

scheme encoded by (6.21), and the mapping B as in (6.22). Let r = q2, with

0 < q2 < d (i.e., q1 = 0), then we have that the set C in (6.23) is the unique

compression set associated to B.

Proof. (Existence) We need to show that δ ∈ B(C) for all δ ∈ S, with C given in

(6.23). Note that if δ ∈ C, then δ ∈ B(C), as it belongs to the discrete part of the

mapping B in (6.22). Then, it suffices to show that δ ∈ B(C) for all δ ∈ S \ C.

To this end notice that any scenario δi ∈ S \ C leads to v(r)(C) ≤ vi(C), so
4Observe the overlapping notation. The mapping B in this section is not related to the mapping

B in (6.15)
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f(x?(C), δi) = t?(C) − vi(C) ≤ t?(C) − v(r)(C). This shows that C in (6.6) is a

compression set of cardinality equal to r + d for the mapping B in (6.22).

(Uniqueness) To show uniqueness, assume that there exists another compression

set C ′ of cardinality equal to r+ d. Pick any δ̄ ∈ C \C ′. We will show that if C \C ′

is non-empty we reach a contradiction with the fact that C ′ is a compression for

the mapping B in (6.22), so we must have C ′ = C.

Suppose that δ̄ ∈ supp((x?(S), t?(S))) \ C ′. By Definition 15, Assumption 13

and the fact that the min-max scenario program admits a unique solution, we must

have that (x?(S), t?(S)) 6= (x?(C ′), t?(C ′)) with5 t?(C ′) < t?(S). We claim that

there exists a δ̄ ∈ supp(x?(C ′), t?(C ′)) \ C ′ with the property that

t?(C ′)− f(x?(C ′), δ̄) ≤ 0. (6.24)

Otherwise, if t?(C ′) − f(x?(C ′), δ) > 0 for all δ ∈ supp((x?(S), t?(S))) \ C ′, then

(x?(C ′), t?(C ′)) would be feasible to the scenario program (6.21), which would

then contradict optimality of t?(S) since we know that t?(C ′) < t?(S). Let any

δ̄ ∈ supp((x?(S), t?(S))) \ C ′ that satisfies (6.24). We now show that it cannot be

in B(C ′). To this end, suppose that δ̄ ∈ B(C ′). Then, we have that

t?(C ′) ≤ f(x?(C ′), δ̄) ≤ t?(C ′)− v(r)(C ′),

where the first inequality holds due to (6.24) and the second one to the fact

that δ̄ ∈ B(C ′). However, since v(r)(C ′) > 0 by construction, we reach the

contradiction t?(C ′) < t?(C ′). This shows that if C ′ is a compression set, then

supp((x?(S), t?(S))) ⊂ C ′.

In other words, if C ′ is a compression and δ̄ ∈ C \ C ′, by the definition of

C in (6.23) we must have that δ̄ ∈ ∪r−1
j=1δ(j) \ C ′. This latter fact implies that

(x?(C), t?(C)) = (x?(C ′), t?(C ′)) = (x?(S), t?(S)). Moreover, since C ′ ⊂ S and

v(r)(S) = v(r)(C), we must have that v(r)(C ′) > v(r)(C). Let δ̄ ∈ C \ C ′ be such
5We cannot have t?(C ′) = t?(S). In fact, if we had t?(C ′) = t?(S), then by uniqueness of the

min-max scenario program (6.9) we would have that x?(S) = x?(C ′); however, this cannot happen
since we know that δ̄ is in supp((x?(S), t?(S))).
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that v(r)(S) = t?(S)− f(x?(S), δ̄) and for the sake of contradiction suppose that δ̄

belongs to B(C ′). We then obtain

v(r)(C ′) ≤ t?(S)− f(x?(S), δ̄) = v(r)(S),

where the inequality follows from the assumption that δ̄ ∈ B(C ′) and the fact that

(x?(C ′), t?(C ′)) = (x?(S), t?(S)), and the equality from the definition of δ̄. However,

this contradicts the fact that v(r)(C ′) > v(r)(S). Hence, we conclude that C in

(6.23) is the unique compression set of cardinality equal to (r + d) for the mapping

B in (6.22). This concludes the proof of Proposition 13.

Step 2: Combining Proposition 13 with Theorem 7, Chapter 5.

We treat the case of arbitrary r in a similar way as in the proof of Theorem 11.

Indeed, we define Ā : ∆m → 2∆ as

Ā(C) = A(C) ∩ {B(C \Rq1(C)) ∪Rq1(C)}, (6.25)

where the mapping A is given in (6.18) and B is given in (6.22). As before, the

mapping A represents the first stage of the removal procedure where the support

set associated to the scenario program (6.10) is discarded at each stage. The

mapping B represents the last stage where we move downwards in the direction

of the epigraphic variable.

Recall that, given S = {δ1, . . . , δm}, we write r = q1(d+ 1) + q2, with 0 < q2 <

d+ 1, using the division algorithm. A compression candidate for the mapping Ā is

C =
q1⋃
k=0

supp((x?k(S), t?k(S))) ∪
q2−1⋃
j=1

δ(j), (6.26)

which has cardinality equal to (d + 1)(q1 + 1) + q2 − 1 = r + d. Note that C

in (6.26) can be written as

C = C1 ∪ C2,

C1 =
q1⋃
k=0

supp((x?k(S), t?k(S))), C2 = supp((x?q1(S), t?q1(S))) ∪
q2−1⋃
j=1

δ(j).
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To show that C is the unique compression set associated to the mapping Ā in (6.25)

we follow mutatis mutandis the corresponding arguments in the proof of Theorem

11, i.e., using the fact that the mappings A and B possess a unique compression

set by Theorem 7 in Chapter 5 and Proposition 13, respectively.

Finally, the bound on the tail distribution of Vq2(S) can be obtained by means of

elementary probability arguments on the mappings that compose Ā in (6.25).

Indeed, we obtain

Pm{S ∈ ∆m : Vq2(S) > ε} ≤ Pm{S ∈ ∆m : P{δ ∈ ∆ : δ /∈ Ā(C)} > ε}. (6.27)

However, as there exists a unique compression set of cardinality equal to r + d

associated to Ā(C), we can invoke Theorem 1, Chapter 2, to obtain the bound of

Theorem 12, thus concluding the proof.
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7
Summary and future research directions

The role of optimisation problems is central to modern engineering applications. In

this thesis we addressed three features that hinder the applicability of optimisation

techniques, namely, scalability, the presence of integer decision variables, and the

presence of uncertain constraints. Below we present a summary of the main results

of this thesis, also discussing future research directions.

Chapter 3: Subgradient averaging for multi-agent optimisa-
tion

Scalability of optimisation problems was addressed in Chapter 3. Our approach

focused on optimisation problems with separable objective functions and con-

straint sets and produced an algorithm that enables scalability by leveraging

local computation.

We proposed a distributed algorithm that involves agents communicating over a

network and sharing information with neighbouring agents only. These features allow

for scalability when data is scattered and cannot be stored in a single processing unit.

The proposed algorithmic scheme is based on subgradient averaging and converges

to the optimal set of the centralised problem under time-varying communication

networks, different constraint sets per agent and non-smooth objective functions.

We have also characterised the rate at which the generated iterates converge to

143
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the optimal set, showing it recovers well-known rates for the centralised problem

under similar assumptions.

There is several scope for improvements in the analysis of this algorithmic scheme.

For instance, extensions of the results in Chapter 3 to encompass unbounded delays

[17], [62], [86] would be important, as real communication networks are subject to

delays that may undermine its convergence properties. The challenge here is to

recognize the weakest assumption on the delays to reach a broad range of application,

while still maintaining similar convergence properties as in Chapter 3.

Chapter 4: Distributed actuator selection

Solving optimisation programs in the presence of integer variables often leads to

intractability, as there are no general polynomial-time algorithms for this class of

problems. In Chapter 4, we have studied a combinatorial problem that consists in

allocating a subset of actuators to maximise the trace of the controllability gramian

of the resulting network. Chapter 4 shows that the feasible set of a relaxation of the

problem is a polyhedron whose vertices have integer components, i.e., the matrix

describing the feasible set is totally unimodular. Hence, the optimal solution of this

formulation can be obtained through convex optimisation. We also leveraged this

result and the structure of the problem to show how existing distributed algorithms

can be employed to obtain such an optimal solution.

Interesting extensions include dealing with constraints in the control input and

increasing the privacy level in the communication between agents. Besides, it is

worth noticing that our approach relies on the fact that the optimal solution using

the trace of the gramian as optimisation metric is on the vertices of a polyhedron.

Providing guarantees to other more general metrics, such as those studied in [54],

[68], [139], using convex relaxations is an interesting direction, as the only known

approximations are based on submodularity properties and greedy strategies to

select the actuators. Extending the analysis in [110] for time-varying networks to

other more general metrics is another interesting direction.
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Chapters 5 and 6: Scenario optimisation with discarded sam-
ples

Uncertain optimisation is – at least conceptually – the closest model to reality, as

it can capture inaccuracies in the system’s parameters and unmodelled dynamics.

Unfortunately, such a model often leads to computational, as well as theoretical

intractability. In this thesis, we have studied a randomised approximation of chance-

constrained optimisation under the lens of the scenario approach theory, which

relies on independent and identically distributed samples (or scenarios) to produce

a feasible solution to the original, chance-constrained problem with high probability.

In Chapters 5 and 6, we studied the sampling-and-discarding approach to

scenario optimisation, in which the decision maker is allowed to discard some of the

scenarios, thus pursuing the typical trade-off between feasibility and performance.

Chapter 5 analysed a specific removal scheme and proved an a-priori bound on the

probability of constraint violation for the final solution that provides improvement

compared to the state-of-the-art. We also show that the proposed bound is tight.

The main limitation of the analysis of Chapter 5 is the fact that scenarios must be

removed proportionally to the dimension of the optimisation problem.

In Chapter 6, we explore the extent to which the removal scheme of Chapter 5

can be applied to an arbitrary number of removed scenarios. We first show that the

condition that has been employed in Chapter 5 to prove tightness of the proposed

bound allows us to extend the considered removal scheme to an arbitrary number

of removed scenarios. In case such a condition cannot be satisfied, we also propose

a loose, but more general, bound on the probability of constraint violation. In fact,

this latter result reveals a negative statement about the proposed removal scheme,

i.e., it states that there is no advantage (in terms of the probability of constraint

violation) to not remove scenarios in a number proportional to the dimension of the

optimisation problem. We also explore the class of min-max scenario programs by

combining the proposed removal scheme with an existing approach that improves

the cost by moving downwards in the direction of the epigraphic variable. We
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show that better bounds on the probability of constraint violation can be obtained

for this particular class of scenario programs.

This research direction still has a lot of scope to be explored. We are currently

focusing on how this new, less conservative bound leads to better performance

in power flow problems. Our intuition says that due to a tighter bound on the

probability of constraint violation we are allowed to remove more constraints with

respect to other removal strategies that rely on the bound in [30], while guaranteeing

the same levels of confidence and probability of constraint violation. Hence, we

expect to obtain better cost improvements using the proposed removal scheme.

Another interesting research direction foresees to relax the requirement that all the

scenarios are i.i.d., since some level of correlation among scenarios is expected in

several applications, e.g., estimating the reachable sets [44].
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