
Data-driven abstractions via adaptive refinements and a Kantorovich
metric

Adrien Banse, Licio Romao, Alessandro Abate and Raphaël M. Jungers

Abstract— We introduce an adaptive refinement procedure
for smart and scalable abstraction of dynamical systems. Our
technique relies on partitioning the state space depending on
the observation of future outputs. However, this knowledge is
dynamically constructed in an adaptive, asymmetric way. In
order to learn the optimal structure, we define a Kantorovich-
inspired metric between Markov chains, and we use it to guide
the state partition refinement. Our technique is prone to data-
driven frameworks, but not restricted to.

We also study properties of the above mentioned metric
between Markov chains, which we believe could be of broader
interest. We propose an algorithm to approximate it, and we
show that our method yields a much better computational
complexity than using classical linear programming techniques.

I. INTRODUCTION

Feedback control of dynamical systems is at the core of
several techniques that have caused tremendous impact in
several industries, being essential to important advancements
in e.g. aerospace and robotics. Traditionally, these control
techniques were model-based, relying on a complete math-
ematical model to perform controller design. With recent
technological advancements, however, where a vast amount
of data can be collected online or offline, the interest within
the control community to study methods that leverage avail-
able data for feedback controller design has been reignited
[1], [2], [3], [4].

In this paper, we focus on data-driven techniques for build-
ing abstractions of dynamical systems. Abstraction methods
create a symbolic model [5], [6] that approximates the
behavior of the original (the “concrete”) dynamics in a way
that controllers designed for such a symbolic representation
can be refined to a valid controller for the original dynamics.
The main advantage of abstraction methods with respect to
standard control techniques is that one can transfer formal
properties from the abstract system to the concrete one
in a rigorous manner. Moreover, one can enforce complex
temporal properties [7], [8], such as those described by LTL,
STL, or PCTL temporal logics, using standard automata

R. M. Jungers is a FNRS honorary Research Associate. This project
has received funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation pro-
gram under grant agreement No 864017 - L2C. R. M. Jungers is also
supported by the Walloon Region and the Innoviris Foundation. He is
currently on sabbatical leave at Oxford University, Department of Com-
puter Science, Oxford, UK. Adrien Banse is supported by the French
Community of Belgium in the framework of a FNRS/FRIA grant. Adrien
Banse and Raphaël M. Jungers are with ICTEAM, UCLouvain. E-mail
adresses: {adrien.banse, raphael.jungers}@uclouvain.be.
Licio Romao and Alessandro Abate are with the Department of Com-
puter Science, Oxford University. E-mail adresses: {licio.romao,
alessandro.abate}@cs.ox.ac.uk.

or MDP-based algorithms widely studied within the formal
verification and control communities [9], [10], [11], [12],
[13]. Classical abstraction methods, however, do not scale
well with the state space dimension of the original dynamics,
as they usually require a partitioning of the state space
whose complexity grows exponentially with the underlying
dimension. Besides, most of the existing abstraction tech-
niques have been designed for when a full mathematical
representation of the dynamics is available.

Several recent research efforts started exploring the possi-
bility of generating data-driven abstractions for stochastic dy-
namical systems [14], [15], [16], [17]. In [14], we show that
memory-based Markov models can be built from trajectory
data. Memory has been classically used as a tool to mitigate
non-Markovian behaviors of the original dynamics [11], [13],
a feature also explored in recent papers [11], [16]. Increasing
memory allows us to create more precise representations
of the original dynamics using Markov decision processes
or Markov chains. In [14], we also propose a heuristic
to validate this observation, and prove a theoretic result
showing convergence of the behavior of the discrete model
to the original dynamics when memory increases (under
observability and ergodicity assumptions). Despite promising
results, [14] does not offer an adaptive mechanism to com-
pute the generated abstraction, and thus it faces the curse of
dimensionality, as the number of possible observations grows
exponentially with the memory length.

Fig. 1. Difference between an adaptive and a brute-force approach. On
the left, an adaptive approach: only some of the possible observations
are expanded. On the right, a brute-force approach: every observation is
expanded. The two resulting abstractions have four states, but the adaptive
one provides a better abstraction (see Example 1).

We follow-up on our results in [14] and improve them in
this aspect. At the core of the approach in this paper is the
construction of a novel metric between two Markov chains;
this metric is then exploited to adaptively increase memory
in certain regions of the state space, in view of taming the
complexity of the generated abstraction. An illustration of
the difference between these two approaches in depicted in

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1509 submitted to 2023 62nd IEEE Conference on
Decision and Control (CDC) . Received March 31, 2023.



Figure 1. As opposed to [14], where the states of the chain
are built using past memory, the abstractions we construct
in this paper are based on forward memory. In order to
define a metric between two Markov models, we leverage the
Kantorovich metric (also known as the Wasserstein or Earth’s
mover distance) between the induced probability on words of
a fixed length and let the word length go to infinity. To define
the Kantorovich metric, we equip the space of words with the
Baire distance [18], turning it into a metric space. The Baire
distance is classically used in symbolic dynamics [5], and
we argue that it is a natural and relevant choice for control
purposes, which is confirmed by numerical experiments. Not
only we show that the proposed metric between Markov
models is well-defined, but we also present an efficient
algorithm that avoids solving linear programs of increasing
size, which would lead to a prohibitive computational burden.

Computing metrics between Markov models has been an
active research topic within the computer science community
[19]. Our construction on the metric between Markov chains
resembles the one presented in [20], however with another
metric, namely the Kantorovich metric induced by the Baire
distance. In [21] computability and complexity results are
shown for the total variation metric. Kantorovich metrics
for Markov models have been studied in [22], [23], [24],
[25], but their underlying distance is different from ours. Our
choice of the Baire distance is crucial both for computational
aspects and for building smart abstractions of dynamical
systems.

Summarizing, our approach is the first one to provide
a data-driven, adaptive abstraction method for dynamical
systems that leverages memory to alleviate non-Markorvian
behaviors associated with the original dynamics. Overall, our
main contribution is threefold. First, we propose a new metric
to measure distance between Markov models. Second, we
develop an efficient algorithm that approximates arbitrarily
well the proposed metric. Third, we exploit the proposed
metric to adaptively improve abstractions in specific regions
of the state space.

Outline: The rest of this paper is organized as follows.
In Section II, we introduce the Kantorovich metric between
two Markov chains, and propose an efficient algorithm to
approximate it with arbitrary precision. In Section III, we ap-
ply this metric to build data-driven abstractions of dynamical
systems using a greedy strategy that leads to the refinement
of the state-space partitioning. We also demonstrate the
quality of our procedure on an example.

Notations: Let A be a finite alphabet. We denote the set
of n-long sequences of this alphabet by An, and the set of
countably infinite sequences by A∗. The symbol Λ stands for
the empty sequence and, for any w1 ∈ An1 , w2 ∈ An2 , the
sequence w1w2 ∈ An1+n2 is the concatenation of w1 and
w2. Let c(x) be a number of operations with respect to some
attributes x. We say that an algorithm has a computational
complexity O(f(x)) if there exists M > 0, x0 such that, for
all x ≥ x0, c(x) ≤Mf(x). For any bounded set X ⊂ Rd, let
σ(X) be the induced σ-algebra of X , and λ be the Lebesgue
measure on Rd, then λX : σ(X) → [0, 1] is defined as

λX(A) = λ(A)/λ(X). Finally, for any set X and function
F , the set F (X) = {F (x) : x ∈ X}.

II. A KANTOROVICH METRIC BETWEEN MARKOV
CHAINS

A. Preliminaries

Using a similar formalism as in [14], we define a labeled
Markov chain as follows.

Definition 1 (Markov chain). A Markov chain is a 5-tuple
Σ = (S,A, P, µ, L), where S is a finite set of states, A is a
finite alphabet, P is the transition matrix on S ×S , µ is the
initial measure on S, and L : S → A is a labelling function.

In Definition 1, the entry of the transition matrix Ps,s′

represents the probability P(Xk+1 = s′|Xk = s). The
labelling L induces a partition of the states. Consider the
equivalence relation on S defined as s ∼ s′ if and only if
L(s) = L(s′). For any a ∈ A, the notion of equivalent
classes is defined as

[a] = {s ∈ S : L(s) = a}. (1)

We also define the behavior of a Markov chain B(Σ) ⊆ A∗
as follows. A sequence w∗ = (a1, a2, . . . ) ∈ B(ΣW) if there
exists s1, s2, · · · ∈ S such that µs1 > 0, Psi,si+1 > 0 and
L(si) = ai.

In the present work, we focus on a notion of metric be-
tween probabilities on label sequences. Let w = (a1, . . . , an)
be a n-long sequence of labels, and define pn : An → [0, 1]
as

pn(w) =
∑

s1∈[a1]

µs1
∑

s2∈[a2]

Ps1,s2 · · ·
∑

sn∈[an]

Psn−1,sn , (2)

that is the probability induced by the Markov chain on n-
long sequences.

Remark 1. Classical procedures are well-known in the liter-
ature allowing to compute the probabilities pn for increasing
n, with a complexity proportional to |S|2 at every step [26].

We endow the set of n-long sequences of labels with the
Baire distance dB .

Definition 2 (Baire’s distance, [18]). The Baire distance
dB : An × An → R is defined as dB(w1, w2) = 2−l,
where l is the length of the longest common prefix. In other
words, let w1 = (a1, . . . , an) and w2 = (b1, . . . , bn), then
dB(w1, w2) = 2−l, where l = inf{k : ak 6= bk}.

B. The Kantorovich metric

Consider two Markov chains Σ1 = (S1,A, P1, µ1, L1)
and Σ2 = (S2,A, P2, µ2, L2) defined on the same alphabet
A. For a fixed n, they respectively generate the distributions
pn1 and pn2 on the metric space (An, dB) as described in (2).
We can now define the Kantorovich metric between pn1 and
pn2 .

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1509 submitted to 2023 62nd IEEE Conference on
Decision and Control (CDC) . Received March 31, 2023.



Definition 3 (Kantorovich metric). The Kantorovich metric
between the probability distributions pn1 and pn2 is given by

K(pn1 , p
n
2 ) = min

πn∈Π(pn1 ,p
n
2 )

∑
w1,w2∈An

dB(w1, w2)πn(w1, w2),

(3)
where Π(pn1 , p

n
2 ) is the set of couplings of pn1 and pn2 , which

contains the joint distributions πn : An×An → [0, 1] whose
marginal distributions are pn1 and pn2 , that is,

∀w1, w2 ∈ An : πn(w1, w2) ≥ 0,

∀w1 ∈ An :
∑

w2∈An

πn(w1, w2) = pn1 (w1),

∀w2 ∈ An :
∑

w1∈An

πn(w1, w2) = pn2 (w2).

(4)

The Kantorovich metric is often interpreted as an op-
timal transport problem. Indeed one can see problem (3)
as the problem of finding the optimal way to satisfy “de-
mands” pn2 with “supplies” pn1 , where the cost of moving
πn(w1, w2) probability mass from w1 to w2 amounts to
πn(w1, w2)dB(w1, w2). An illustration is provided in Fig-
ure 2.

Zero cost

 cost

 cost

Fig. 2. Interpretation of the Kantorovich distance as an optimal transport
problem. In this example, the alphabet A = {0, 1}, p21(w) = 1/4 for all
w ∈ A2, and p22(00) = 0, p22(01) = p22(10) = 1/4, and p22(11) =
1/2. One can see that the optimal way to satisfy the demands pn2 with
the supplies pn1 is to move 1/4 of probability mass from 00 to 11, that is
π2(00, 11) = 1/4. Since dB(00, 11) = 1/2, the Kantorovich distance is
K(p21, p

2
2) = 1/8.

A naı̈ve computation of K(pn1 , p
n
2 ) in (3) entails solving a

linear program. However, standard techniques, such as inte-
rior point methods and network simplex result in some cases
in a complexity of O(n|A|3n log(|A|)), and therefore scale
very poorly with the number labels. In this section, we show
that it is possible to compute K(pn1 , p

n
2 ) in O(|S|2|A|n+1)

operations.
We present in Theorem 1 a key result for writing an

efficient algorithm. Due to space constraints, its proof is
omitted here but can be found in the extended version of
this paper1.

Theorem 1. For any n ≥ 1, let πn be the solution of (3).

1https://adrienbanse.github.io/assets/pdf/
cdc23 extended.pdf

Then the following holds:

K(pn+1
1 , pn+1

2 ) = K(pn1 , p
n
2 )

+ 2−(n+1)
∑
w∈An

[
r(w)−

∑
a∈A

r(wa)

]
,

(5)

where
r(w) = min{pn1 (w), pn2 (w)},
r(wa) = min{pn+1

1 (wa), pn+1
2 (wa)}.

Theorem 1 allows to prove that Algorithm 1 efficiently
computes the Kantorovich metric between pn1 and pn2 .

Algorithm 1 KANT(k,m,w, n)

for i = 1, . . . , |A| do
Compute pn1 (wai) and pn2 (wai) (see Remark 1)
ri ← min{pn1 (wai), p

n
2 (wai)}

RES = 2−(k+1)(m−
∑
i=1,...,|A| ri)

if k + 1 = n then
return RES

for i = 1, . . . , |A| do
if ri 6= 0 then

RES ← RES + KANT(k + 1, ri, wai, n)
return RES

Corollary 1. Let KANT be the algorithm described in
Algorithm 1, then

K(pn1 , p
n
2 ) = KANT(0, 1,Λ, n). (6)

Moreover KANT terminates in O(|S|2|A|n+1) operations.

Proof. We will prove that (6) holds by induction on the level
of the execution tree of Algorithm 1. Let us prove that case
n = 1. The constraints (4) imply that∑

a1,a2∈A
π1((a1), (a2)) = 1.

Therefore,

K(p1
1, p

1
2) = 2−1

∑
a1,a2∈A
a1 6=a2

π1((a1), (a2))

= 2−1

[
1−

∑
a∈A

π1((a), (a))

]
.

(7)

Moreover, for all a ∈ A, the solution of πn((a), (a)) =
r(wa). A formal proof of this can be found in the ex-
tended version of this paper. Therefore (7) is the result of
KANT(0, 1,Λ, 1). Now, assume that (6) holds for n. By
Theorem 1,

K(pn+1
1 , pn+1

2 ) = KANT(0, 1,Λ, n)

+ 2−(n+1)
∑
w∈An

[
r(w)−

∑
a∈A

r(wa)

]
.

(8)

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1509 submitted to 2023 62nd IEEE Conference on
Decision and Control (CDC) . Received March 31, 2023.



Following the notations of Algorithm 1, let mw = r(w), and
let rwi = r(wai). One can re-write (8) as

K(pn+1
1 , pn+1

2 ) = KANT(0, 1,Λ, n)

+
∑
w∈An

2−(n+1)

mw −
∑

i=1,...,|A|

rwi

 .
One can recognize KANT(0, 1,Λ, n + 1) in the right hand
side of the equation above, which conludes the proof of (6).

In terms of computational complexity, the bottleneck of
Algorithm 1 is the computation of pn1 and pn2 at each node
of the execution tree. Following Remark 1, this can be done
in O(|S|2) operations. Since there are O(|A|n+1|) nodes
in the execution tree, the total number of operations is
O(|S|2|A|n+1). �

C. A metric between Markov chains

Let Σ1 and Σ2 be two Markov chains defined on the same
alphabet A. We define a metric between them as

d(Σ1,Σ2) = lim
n→∞

K(pn1 , p
n
2 ),

where pn1 and pn2 are the distributions on An induced by each
Markov chain on n-long label sequences.

Remark 2. The Baire distance 2−l can be interpreted as
a discount factor. Therefore, the metric d(Σ1,Σ2), if well-
defined, can be interpreted as a discounted measure of the
difference between the behaviors B(Σ1) and B(Σ2).

We now prove that this distance is well-defined. A proof
of Theorem 2 can be found in Appendix A.

Theorem 2. The metric d(Σ1,Σ2) is well-defined. Moreover,
for any n ≥ 1,

0 ≤ d(Σ1,Σ2)−K(pn1 , p
n
2 ) ≤ 2−n.

Theorem 2 provides a guarantee on the approximation of
d(Σ1,Σ2) that we will be able to compute. Indeed, for any
ε > 0, if n ≥ dlog2(ε−1)e, then

0 ≤ d(Σ1,Σ2)−K(pn1 , p
n
2 ) ≤ ε.

Following Corollary 1, for a fixed number of labels and
states, this implies that an ε-solution can be found in O(ε−1)
computational complexity.

III. APPLICATION: DATA-DRIVEN MODEL ABSTRACTIONS

We now show how the metric d(Σ1,Σ2) enables an adap-
tive refinement procedure for dynamical systems abstraction.

A. Abstractions with adaptive refinement

In this section, we introduce a new abstraction based
on adaptive refinements. Even though our approach can be
generalized to stochastic systems, in this preliminary work
we focus on deterministic ones, which we now define.

Definition 4 (Dynamical system). A dynamical system is the
4-tuple S = (X,A, F,H) that defines the relation

xk+1 = F (xk), yk = H(xk),

where X ⊆ Rd is the state space, A is a finite alphabet
called the output space, F : X → X is a transition function,
and H : X → A is the output function. The variables xk
and yk are called the state and the output at time k.

Also, in parallel to the definition of behavior of a Markov
chain, we define the behavior of a dynamical system B(S) ⊆
A∗ as follows. A sequence w∗ = (a1, a2, . . . ) ∈ B(S)
if there exists x1, x2, · · · ∈ X such that xi+1 = F (xi)
and H(xi) = ai. Also, in parallel to equivalent classes
(1) on Markov chains, we define equivalent classes on the
continuous state space X . A subset of states is an equivalent
class if it satisfies the recursive relation

[wa]S = {x ∈ [w]S |Hn(x) = a}, [Λ]S = X,

for any w ∈ An and a ∈ A. In other words, for a given
sequence w = (a1, . . . , an), a state x ∈ [w]S if H(x) = a1,
H(F (x)) = a2, . . . , and H(Fn−1(x)) = an. In this work,
we impose the following assumption on dynamical systems.

Assumption 1. The dynamical system S as defined as
Definition 4 is such that, for any w ∈ An and a ∈ A,
the following two conditions hold:
• If λX([w]S) = 0, then [w]S = ∅.
• If λX([wa]S) = λX([w]S), then [w]S = [wa]S .

Informally, Assumption 1 requires that any possible tra-
jectory has a nonzero probability to be sampled.

Definition 5 (Adaptive partitioning). Let w1 ∈ An1 , w2 ∈
An2 , . . . , wk ∈ Ank be k sequences of labels of different
lengths. The set of sequences W = {wi}i=1,...,k is an
adaptive partitioning for S if⋃

w∈W
[w]S = X, ∀i 6= j, [wi]S ∩ [wj ]S = ∅.

We now introduce an abstraction procedure based on an
adaptive partitioning refinements.

Definition 6 (Abstraction based on adaptive refinements).
Let S = (X,A, F,H) be a dynamical system as defined in
Definition 4, and let W be an adaptive partitioning for S as
defined in Definition 5. Then the corresponding abstraction
based on adaptive refinements is the Markov chain ΣW =
(S,A, P, µ, L) defined as follows:
• The states are the partitions, that is S =W .
• µw is the Lebesgue measure of equivalent class [w]S

on X , that is µw = λX([w]S).
• For w1 = (a1, . . . , an1

), and w2 = (b1, . . . , bn2
), let

k = min{n1 − 1, n2}, w′1 = (a2, . . . , ak+1), and
w′2 = (b1, . . . , bk). If w′1 6= w′2 or λX([w1]S) = 0,
then Pw1,w2 = 0. Else

Pw1,w2 =
λX([a1w2]S)

λX([w1]S)
.

• For w = (a1, . . . , an), L(w) = a1.

Informally, for a given adaptive partitioning W , the ab-
straction ΣW can be interpreted as follows. The initial
probability to be in the state w in the Markov chain is

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1509 submitted to 2023 62nd IEEE Conference on
Decision and Control (CDC) . Received March 31, 2023.



the proportion of [w]S in X , and the probability to jump
from the state w1 to the state w2 is the proportion of [w1]S
that goes into [w2]S given the dynamics. We now provide a
result that gives a sufficient condition for the abstraction to
have the same behavior as the original system. A proof of
Proposition 1 can be found in Appendix B.

Proposition 1. Given a dynamical system S satisfying As-
sumption 1, consider abstraction ΣW as per Definition 6. If
for all w1, w2 ∈ W , Pw1,w2 ∈ {0, 1}, then B(ΣW) = B(S).

B. A data-driven abstraction

In this section, we propose a method to construct an
abstraction based on adaptive refinements, from a data set
comprising outputs sampled from the dynamical model S.
Given an adaptive partitioning W , we propose to construct
ΣW using empirical probabilities (see [14] for more details).
We make the following assumption, which considers an
idealised situation where one has an infinite number of
samples. We leave for further work the relaxation of this
assumption.

Assumption 2. For any abstraction ΣW = (W,A, P, µ, L),
the transition probabilities P and the initial distribution µ
are known exactly.

Now we are able to use the tool investigated in Sec-
tion II to find a smart adaptive partitioning. Indeed, one
can construct two abstractions ΣW1

and ΣW2
corresponding

to two different partitionings, and efficiently compute the
Kantorovich metric d(ΣW1

,ΣW2
) up to some accuracy ε

following Corollary 1. This gives a discounted measure
of the difference between B(ΣW1) and B(ΣW2) (see Re-
mark 2). This reasoning leads to the greedy procedure
REFINE(S,N, ε) described in Algorithm 2.

Algorithm 2 REFINE(S,N, ε)

W ← {(a)}a∈A
Construct ΣW from samples of S
while ∃w1, w2 ∈ W : Pw1,w2

∈ (0, 1) do
if N = 0 then

return ΣW
for i = 1, . . . , |W| do
W ′i ←W \ {wi}
W ′i ←W ′i ∪ {wia}a∈A
Construct ΣW′i from samples of S
di ← d(ΣW ,ΣW′i) with precision ε

j = arg maxi=1,...,|W| di
W ←W ′j
ΣW ← ΣW′j
N ← N − 1

return ΣW

An interpretation of Algorithm 2 goes as follows. Let
W be a coarse partitioning, and W ′1 and W ′2 be two more
refined partitionings. If d(ΣW ,ΣW′1) > d(ΣW ,ΣW′2), then
one could argue that it is more interesting to chooseW ′1 over
W ′2, since the discounted measure between the behaviors

corresponding to the coarse partitioning and the refined parti-
tioning is larger. Moreover, if at some point ΣW is such that
Pw,w′ ∈ {0, 1} for all w,w′ ∈ An, then one has a sufficient
condition to stop the algorithm following Proposition 1,
otherwise the algorithm stops after N iterations. If N =∞,
then the algorithm only stops in such case. An execution step
of the algorithm can be found in Figure 3. A complexity
analysis of Algorithm 2 can be found in Corollary 2, whose
proof is in Appendix C.

Fig. 3. Illustration of the execution of Algorithm 2. Consider a current
partitioning W = {00, 01, 1}, with the corresponding abstraction ΣW .
Then the algorithm will explore the partitionings W ′

1 = {000, 001, 01, 1},
W ′

2 = {00, 010, 011, 1} and W ′
3 = {00, 01, 10, 11}. For each one, it

will compute ΣW′i
, and d(ΣW ,ΣW′i

), and choose the one for which the
distance to ΣW is the largest.

Corollary 2. The algorithm REFINE(S,N, ε) terminates in
O(|A|n+4N4) operations, with n = dlog2(ε−1)e. Moreover,
for S satisfying Assumption 1, if ΣW = REFINE(S,∞, ε)
terminates, then B(ΣW) = B(S).

C. Numerical examples

In this section, we demonstrate on an example that our
greedy algorithm converges to a smart partitioning2, and
we show how to use the proposed framework for controller
design.

Example 1. Consider S = (X,A, F,H) with X = [0, 2]×
[0, 1], A = {0, 1}. Let F be defined as

F (x) =


x if x ∈ P1 ∪ P4,

(x1/2 + 1/2, x2 + 1/2) if x ∈ P2,

(x1 − 1/2, x2) if x ∈ P3,

(2x1 + 1, 4x2 − 3/4) else,

where Pi are depicted in Figure 4, and H(x) = 0 if x ∈ P1,
else H(x) = 1. An illustration and interpretation of S is
given in Figure 4.

The result of the algorithm applied to Example 1 at all
iterations k is depicted in Table I.

The final partitioning is illustrated in Figure 5. Observe
that the generated partitioning aligns well with the dynamics,
and that our algorithm generates an emerging structure which
is not trivial. The algorithm stops at the third iteration since
the obtained data-driven abstraction is such that Pw,w′ ∈
{0, 1}, which is a stopping criterion following Proposition 1,
and has much less states than the brute force approach of
[14].

2All the code corresponding to this section can be found at https:
//github.com/adrienbanse/KantorovichAbstraction.jl.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1509 submitted to 2023 62nd IEEE Conference on
Decision and Control (CDC) . Received March 31, 2023.



Fig. 4. Illustration and description of the transition function F of
Example 1. F has to be understood in the following way: P1 is mapped
to itself, P2 is mapped to P3, the lower half of P3 is mapped to P4, the
upper half of P3 is mapped to P5, P5 is mapped to P1, and P4 to itself.

W d
(

ΣW ,ΣW′j

)
Pw,w′ ∈ {0, 1}

k = 0 {0, 1} 0.0015 No
k = 1 {0, 10, 11} 0.0059 No
k = 2 {0, 10, 110, 111} 0.0039 No
k = 3 {0, 10, 110, 1110, 1111} - Yes

TABLE I. Results of Algorithm 2 for Example 1. For each iteration k, the
current model is the abstraction corresponding to ΣW , and the chosen model
is ΣW′j

, with the largest distance d(ΣW ,ΣW′j
). With P the transition

matrix of the current model, if for all w,w′ ∈ An, Pw,w′ ∈ {0, 1}, the
algorithm stops.

Fig. 5. Illustration of the last partitioning W given by Algorithm 2 for
Example 1.

We further demonstrate the quality of the obtained ab-
stractions by designing a controller for a similar dynamical
system.

Example 2. Consider the dynamical system S as described
in Example 1, except that the dynamics is controlled as
follows:

x̃k = xk +

(
0
1

)
uk, xk+1 = F (x̃k)

where uk = K(xk) ∈ {0, 1/4, 1/2} is an input to the system.
Consider the reward r(x) = 1 if H(x) = 0, else r(x) = 0,
and a discounted expected reward maximization objective,
that is

max
K

Ex1∼µ(X)

∑
k

γkr(xk), (9)

where µ(X) is the uniform distribution on X , and γ = 0.95
is a discount factor.

To solve this optimal control problem, we will use the ab-
stractions constructed by Algorithm 2. For each partitioning
W in Table I, we will construct the data-driven abstraction
ΣuW corresponding to the actions given in Example 2, that
is u = 0, u = 1/4 and u = 1/2. We will then solve a

Markov Decision Process (or MDP for short, see [27] for an
introduction) maximizing the expected reward of the MDP.
For this, we used the implementation of the value iteration
algorithm implemented in the POMDPs.jl Julia package
[28]. Now, let P (s) be the optimal policy for the state s,
we design the controller for the system 2 as follows: for
xk ∈ [w]S , then

uk = K(xk) = P (w). (10)

For the different abstractions found by Algorithm 2, the
corresponding expected rewards (9) for the original system
controlled by (10) are given in Table II. One can see that
the expected reward increases as our algorithm refines the
state-space.

Iteration Controller (10) Expected reward (9)

k = 0 K(x) =

{
0 if x ∈ [0]S
0 if x ∈ [1]S

14.4784

k = 1 K(x) =


0 if x ∈ [0]S
0 if x ∈ [10]S
1/4 if x ∈ [11]S

18.8726

k = 2 K(x) =


0 if x ∈ [0]S
0 if x ∈ [10]S
0 if x ∈ [110]S
1/4 if x ∈ [111]S

19.0311

k = 3 K(x) =



0 if x ∈ [0]S
0 if x ∈ [10]S
0 if x ∈ [110]S
1/2 if x ∈ [1110]S
1/4 if x ∈ [1111]S

19.1022

TABLE II. Expected rewards (9) for the Example 2 controlled by (10).
The iterations k correspond to the iterations of Algorithm 2 represented in
Table I. The optimal policy is found by solving MDPs corresponding to
the three possible actions uk ∈ {0, 1/4, 1/2}, and the expected reward
(9) is approximated by sampling 5000 trajectories of length 1000. One can
observe that the expected reward increases.

IV. CONCLUSION AND FURTHER RESEARCH

We now summarize the contributions of this work. First,
we proposed a Kantorovich metric between two Markov
chains, defined on an underlying space defined by the Baire
distance. We showed that one can arbitrarily approximate this
metric with an efficient algorithm, and therefore efficiently
compute a discounted measure between the behaviors of two
Markov chains. We then applied this metric to the construc-
tion of data-driven abstractions based on adaptive refinement.
More precisely, we propose a greedy procedure using the
Kantorovich metric to assess the difference between two
abstractions. We showed that, in some cases, the obtained
abstraction has exactly the same behavior as the original
dynamical system. We also demonstrated the quality of our
procedure by designing a controller for the original system,
from the obtained finite model.

As further research, we would like to investigate other
underlying distances than the Baire distance, and characterize
those for which the Kantorovich metric can be efficiently
computed. We would also like to investigate even more
efficient algorithms to compute the proposed metric between

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1509 submitted to 2023 62nd IEEE Conference on
Decision and Control (CDC) . Received March 31, 2023.



Markov chains, or to establish rigorous connections with
alternative metrics in the litterature. Finally, we plan to de-
sign a smart stopping criterion for our refinement procedure.
For example, we could quantify a difference between the
behavior of the abstraction at any iteration, and the behavior
of the original system.

ACKNOWLEDGMENT

We thank Prof. Franck van Breugel and Prof. Prakash
Panangaden for their insightful comments and the interesting
conversations about this work.

REFERENCES

[1] C. D. Persis and P. Tesi, “Formulas for data-driven control: Stabi-
lization, optimality, and robustness,” IEEE Transactions on Automatic
Control, vol. 65, pp. 909–924, 3 2020.

[2] Z. Wang and R. M. Jungers, “A data-driven method for computing
polyhedral invariant sets of black-box switched linear systems,” IEEE
Control Systems Letters, vol. 5, pp. 1843–1848, 11 2021.

[3] J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Data-driven
model predictive control with stability and robustness guarantees,”
IEEE Transactions on Automatic Control, 6 2021.

[4] A. Banse, Z. W. Raphaël, and M. Jungers, “Black-box stability analysis
of hybrid systems with sample-based multiple lyapunov functions,” in
2022 IEEE 61st Conference on Decision and Control (CDC), 2022,
pp. 7284–7289.

[5] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and
Coding. Cambridge University Press, 2003.

[6] A. van der Schaft, “Equivalence of dynamical systems by bisimula-
tion,” IEEE Transactions on Automatic Control, vol. 49, pp. 2160–
2172, 2004.

[7] C. Baier and J. P. Katoen, Principles of Model Checking. MIT Press
Books, 2008.

[8] P. Tabuada, Verification and Control of Hybrid Systems. Springer,
2009.

[9] M. Kwiatkowska, D. Parker, and G. Norman, “Prism 4.0: Verification
of probabilistic real-time systems,” 2011, pp. 1–6.

[10] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A storm is coming:
A modern probabilistic model checker,” R. Majumdar and V. Kunčak,
Eds., vol. 10427. Springer International Publishing, 2017.

[11] R. Majumdar, N. Ozay, and A. K. Schmuck, “On abstraction-based
controller design with output feedback.” Association for Computing
Machinery, Inc, 4 2020.

[12] T. Badings, L. Romao, A. Abate, D. Parker, H. Poonawala,
M. Stoelinga, and N. Jensen, “Robust control for dynamical systems
with non-gaussian via formal abstractions,” Journal of Artificial Intel-
ligence Research, vol. 76, pp. 341–391, 2023.

[13] A. K. Schmuck and J. Raisch, “Asynchronous l-complete approxima-
tions,” Systems and Control Letters, vol. 73, pp. 67–75, 2014.

[14] A. Banse, L. Romao, A. Abate, and R. M. Jungers, “Data-
driven memory-dependent abstractions of dynamical systems,” 2022.
[Online]. Available: https://arxiv.org/abs/2212.01926

[15] A. Devonport, A. Saoud, and M. Arcak, “Symbolic abstractions
from data: A pac learning approach,” 4 2021. [Online]. Available:
http://arxiv.org/abs/2104.13901

[16] R. Coppola, A. Peruffo, and M. M. Jr., “Data-driven abstractions
for verification of deterministic systems,” 2023. [Online]. Available:
https://arxiv.org/abs/2211.01793

[17] A. Lavaei, S. Soudjani, E. Frazzoli, and M. Zamani, “Constructing
mdp abstractions using data with formal guarantees,” 6 2022.
[Online]. Available: http://arxiv.org/abs/2206.14402

[18] R. Baire, “Sur la représentation des fonctions discontinues: Première
partie,” Acta Mathematica, vol. 30, no. none, pp. 1–48, Jan. 1906,
publisher: Institut Mittag-Leffler.

[19] Y. Deng and W. Du, “The Kantorovich Metric in Computer Science:
A Brief Survey,” Electronic Notes in Theoretical Computer Science,
vol. 253, no. 3, pp. 73–82, Nov. 2009. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1571066109004265

[20] Z. Rached, F. Alajaji, and L. Campbell, “The Kullback–Leibler Di-
vergence Rate Between Markov Sources,” Information Theory, IEEE
Transactions on, vol. 50, pp. 917–921, Jun. 2004.

[21] S. Kiefer, “On Computing the Total Variation Distance of Hidden
Markov Models,” Apr. 2018, arXiv:1804.06170 [cs]. [Online].
Available: http://arxiv.org/abs/1804.06170

[22] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Metrics
for labelled Markov processes,” Theoretical Computer Science, vol.
318, no. 3, pp. 323–354, Jun. 2004. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0304397503006042

[23] F. van Breugel, B. Sharma, and J. Worrell, “Approximating a Be-
havioural Pseudometric Without Discount for Probabilistic Systems,”
in Foundations of Software Science and Computational Structures, ser.
Lecture Notes in Computer Science, H. Seidl, Ed. Berlin, Heidelberg:
Springer, 2007, pp. 123–137.

[24] N. Madras and D. Sezer, “Quantitative bounds for Markov
chain convergence: Wasserstein and total variation distances,”
Bernoulli, vol. 16, no. 3, pp. 882–908, Aug. 2010,
publisher: Bernoulli Society for Mathematical Statistics and
Probability. [Online]. Available: https://projecteuclid.org/journals/
bernoulli/volume-16/issue-3/Quantitative-bounds-for-Markov-chain-
convergence--Wasserstein-and-total/10.3150/09-BEJ238.full

[25] D. Rudolf and N. Schweizer, “Perturbation theory for Markov chains
via Wasserstein distance,” Bernoulli, vol. 24, no. 4A, pp. 2610–2639,
Nov. 2018, publisher: Bernoulli Society for Mathematical Statistics
and Probability. [Online]. Available: https://projecteuclid.org/journals/
bernoulli/volume-24/issue-4A/Perturbation-theory-for-Markov-
chains-via-Wasserstein-distance/10.3150/17-BEJ938.full

[26] P. Bikash, “A tutorial on hidden Markov mod-
els and selected applications in speech recogni-
tion,” Proceedings of the IEEE, Jan. 1989. [Online].
Available: https://www.academia.edu/1806671/A tutorial on hidden
Markov models and selected applications in speech recognition

[27] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: A Bradford Book, 2018.

[28] M. Egorov, Z. N. Sunberg, E. Balaban, T. A. Wheeler, J. K. Gupta,
and M. J. Kochenderfer, “POMDPs.jl: A Framework for Sequential
Decision Making under Uncertainty,” Journal of Machine Learning
Research, vol. 18, no. 26, pp. 1–5, 2017. [Online]. Available:
http://jmlr.org/papers/v18/16-300.html

APPENDIX

A. Proof of Theorem 2

Let Kn = K(pn1 , p
n
2 ). First, we prove that, for all n ≥ 1,

0 ≤ Kn+1 −Kn ≤ 2−n. (11)

Following Theorem 1, it suffices to show that

0 ≤
∑
w∈An

[
r(w)−

∑
a∈A

r(wa)

]
≤ 1, (12)

By the law of total probability, we have that

pn1 (w) =
∑
a∈A

pn+1
1 (wa),

and similarly for pn2 (w). Hence

0 ≤ r(w)−
∑
a∈A

r(wa) ≤ r(w),

which shows that (12) holds. Now, notice that (11) implies
that the sequence (Kn)n≥1 is monotone, and bounded since

lim
n→∞

Kn ≤
∑
n≥1

(Kn+1 −Kn) ≤
∑
n≥1

2−n = 1.

By the monotone convergence theorem, the limit exists and
is equal to

lim
n→∞

Kn = sup
n≥1

Kn.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1509 submitted to 2023 62nd IEEE Conference on
Decision and Control (CDC) . Received March 31, 2023.



Moreover, since Kn is a distance for every n ≥ 1, and the
limit exists, we have that limn→∞Kn is also a distance.
Finally, by (11),

lim
n→∞

Kn −Kp ≤
∑
n≥p

Kn = 2−p,

for any p ≥ 1, which concludes the proof of the theorem.

B. Proof of Proposition 1

We first prove that, if there are w1, w2 ∈ W such that
Pw1,w2

= 1, then

F ([w1]S) ⊆ [w2]S . (13)

Let w1, w2, k, w′1 and w′2 be as in Definition 6. Let us note
that

F ([w1]S) =

F (x) ∈ X

∣∣∣∣∣∣∣∣
H(x) = a1,
H(F (x)) = a2

. . .
H(Fn−1(x)) = an1


= F ([(a1)]S) ∩ [(a2, . . . , an1

)]S

(14)

Now, since Pw1,w2
> 0, then w′1 = w′2. There are two cases,

either w′1 = (a2, . . . , ak+1) and w′2 = w2, or w′1 = w1 and
w′2 = (b1, . . . , bk). Let us investigate these separately. In the
first case, (a2, . . . , ak+1) = w2. By definition,

[(a2, . . . , an1
)]S ⊆ [(a2, . . . , ak+1)]S = [w2]S .

Therefore (14) implies

F ([w1]S) ⊆ F ([(a1)]S) ∩ [w2]S ⊆ [w2]S ,

which is (13). In the second case, assume that

[w1]S = [a1w2]S , (15)

then
F ([w1]S) = F ([a1w2]S)

= F ([(a1)]S) ∩ [w2]S

⊆ [w2]S ,

where a very similar as in (14) was used. It remains to show
that (15) holds. Since we are in the second case cited above,
then

a1w2 = w1(bk+1, . . . , bn2
),

which implies that [a1w2]S ⊆ [w1]S . Moreover, Pw1,w2
= 1,

that is
λX([a1w2]S) = λX([w1]S).

Following Assumption 1, it means that [a1w2]S = [w1]S ,
which proves (13).

Now we prove that (13) implies B(ΣW) = B(S). We first
prove that B(S) ⊆ B(ΣW). Let w∗ = (a1, a2, . . . ) ∈ A∗
such that w∗ /∈ B(ΣW), then there are ai, ai+1 such that, for
all w1, w2 ∈ W for which L(w1) = ai and L(w2) = ai+1,
Pw1,w2

= 0. This could mean three things.
1) For all such w1, λX([(ai)]S) = 0. Following Assump-

tion 1, it means that [(ai)]S = ∅.
2) Let w2 = (ai+1, b2, . . . , bn2

). For all such w2,

λX([(ai, ai+1, b2, . . . , bn2
)]S) = 0,

which means by Assumption 1 that

[(ai, ai+1, b2, . . . , bn2)]S = ∅.

By Definition 5, it implies that [aiai+1]S = ∅.
In any case, it means that w∗ 6= B(S). Now we prove
B(ΣW ) ⊆ B(S). Let w∗ = (a1, a2, . . . ) ∈ B(ΣW). It means
that there exists w1, w2, · · · ∈ W such that L(wi) = ai and
Pwi,wi+1 = 1. Following (13), this implies that F ([wi]S) ⊆
[wi+1]S . This implies that [aiai+1]S 6= ∅, which means
w∗ ∈ B(S).

C. Proof of Corollary 2

Proposition 1 gives a sufficient condition to stop the
algorithm, hence the second part of the claim. It remains
to prove that the computational complexity is the claimed
one. Let W(k) and W

′(k)
i be the abstractions W and W ′i at

iteration k in Algorithm 2. First we note that

|W(k)| = k|A| − (k− 1), |W
′(k)
i | = (k+ 1)|A| − k (16)

At each iteration k, one has to compute |W(k)| times the
ε-accurate Kantorovich distance between two models of
sizes given by (16). By Corollary 1, such computational
complexity is

O
(
|W(k)|

(
|A|n+1

(
|W(k)|2 + |W

′(k)
i |2

)))
=O

(
|A|n+1|W

′(k)
i |3

)
=O

(
|A|n+4(k + 1)3

)
.

Now, the worst-case is when the algorithm does not converge
to an abstraction where there exists w,w′ such that Pw,w′ ∈
(0, 1). Therefore, the total computational complexity is

N∑
k=1

O
(
|A|n+4(k + 1)3

)
= O

(
|A|n+4N4

)
,

which is the claim.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1509 submitted to 2023 62nd IEEE Conference on
Decision and Control (CDC) . Received March 31, 2023.


