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Abstract

Policy robustness in Reinforcement Learning may not be desirable at any costs:1

the alterations caused by robustness requirements from otherwise optimal policies2

should be explainable, quantifiable and formally verifiable. In this work we study3

how policies can be maximally robust to arbitrary observational noise by analysing4

how they are altered by this noise through a stochastic linear operator interpretation5

of the disturbances, and establish connections between robustness and properties of6

the noise kernel and of the underlying MDPs. Then, we construct sufficient condi-7

tions for policy robustness, and propose a robustness-inducing scheme, applicable8

to any policy gradient algorithm, that formally trades off expected policy utility for9

robustness through lexicographic optimisation, while preserving convergence and10

sub-optimality of the original algorithm.11

1 Introduction12

Robustness in Reinforcement Learning (RL) [Morimoto and Doya, 2005] can be looked at from13

different perspectives: (1) distributional shifts in the training data with respect to the deployment14

stage Satia and Lave Jr [1973], Heger [1994], Nilim and El Ghaoui [2005], Xu and Mannor [2006];15

(2) uncertainty in the model or observations [Pinto et al., 2017, Everett et al., 2021]; (3) adversarial16

attacks against actions [Pattanaik et al., 2017, Fischer et al., 2019]; and (4) sensitivity of neural17

networks (used as policy or value function approximators) towards input disturbances [Kos and Song,18

2017, Huang et al., 2017]. Robustness does not naturally emerge in most RL settings, since agents19

are typically only trained in a single, unchanging environment: There is a trade-off between how20

robust a policy is and how close it is to the set of optimal policies in its training environment, and in21

safety-critical applications we may need to provide formal guarantees for this trade-off.22

Motivation Consider a dynamical system where we need to synthesise a controller (policy) through23

a model-free approach. When using a simulator for training we expect the deployment of the controller24

in the real system to be affected by different sources of noise, possibly not predictable or modelled (e.g.25

for networked components we may have sensor faults, communication delays, etc). In safety-critical26

systems, robustness (in terms of successfully controlling the system under disturbances) should27

preserve formal guarantees, and plenty of effort has been put on developing formal convergence28

guarantees on policy gradient algorithms [Agarwal et al., 2021, Bhandari and Russo, 2019] which29

vanish when “robustifying” policies through regularisation or adversarial approaches. Therefore,30

for such applications one would need a scheme to regulate the robustness-utility trade-off in RL31

policies, that on the one hand preserves the formal guarantees of the original algorithms, and on the32

other attains sub-optimality conditions from the original problem. Additionally, if we do not know33

the structure of the disturbance (which holds in most applications), learning directly a policy for an34

arbitrarily disturbed environment will yield unexpected behaviours when deployed in the true system.35
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Lexicographic Reinforcement Learning (LRL) Recently, lexicographic optimisation [Isermann,36

1982, Rentmeesters et al., 1996] has been applied to the multi-objective RL setting [Skalse et al.,37

2022b]. In an LRL setting with different reward-maximising objective functions {Ki}1≤i≤n, some38

objectives may be more important than others, and so we may want to obtain policies that solve the39

multi-objective problem in a lexicographically prioritised way, i.e., “find the policies that optimise40

objective i (reasonably well), and from those the ones that optimise objective i+ 1 (reasonably well),41

and so on”. There exist both value- and policy-based algorithms for LRL, and the approach is broadly42

applicable to (most) existing RL algorithms [Skalse et al., 2022b].43

Previous Work In robustness against model uncertainty, the MDP may have noisy or uncertain44

reward signals or transition probabilities, as well as possible resulting distributional shifts in the45

training data [Heger, 1994, Xu and Mannor, 2006, Fu et al., 2018, Pattanaik et al., 2018, Pirotta46

et al., 2013, Abdullah et al., 2019], which connects to ideas on distributionally robust optimisation47

[Wiesemann et al., 2014, Van Parys et al., 2015]. One of the first examples is Heger [1994], where48

the author proposes using minimax approaches to learn Q functions that minimise the worst case49

total discounted cost in a general MDP setting. Derman et al. [2020] propose a Bayesian approach to50

deal with uncertainty in the transitions. Another robustness sub-problem is studied in the form of51

adversarial attacks or disturbances by considering adversarial attacks on policies or action selection52

in RL agents [Gleave et al., 2020, Lin et al., 2017, Tessler et al., 2019, Pan et al., 2019, Tan et al.,53

2020, Klima et al., 2019]. Recently, Gleave et al. [2020] propose the idea that instead of modifying54

observations, one could attack RL agents by swapping the policy for an adversarial one at given55

times. For a detailed review on Robust RL see Moos et al. [2022]. Our work focuses in the study of56

robustness versus observational disturbances, where agents observe a disturbed state measurement57

and use it as input for the policy [Kos and Song, 2017, Huang et al., 2017, Behzadan and Munir,58

2017, Mandlekar et al., 2017, Zhang et al., 2020, 2021]. This problem emerges in many robotics59

applications, where one learns a policy through a simulator or human imitation, and then needs60

to rely on sensor data for a real-world deployment. In particular Mandlekar et al. [2017] consider61

both random and adversarial state perturbations, and introduce physically plausible generation of62

disturbances in the training of RL agents that make the resulting policy robust towards realistic63

disturbances. Zhang et al. [2020] propose a state-adversarial MDP framework, and utilise adversarial64

regularising terms that can be added to different deep RL algorithms to make the resulting policies65

more robust to observational disturbances, and Zhang et al. [2021] study how LSTM increases66

robustness with optimal state-perturbing adversaries.67

1.1 Main Contributions68

Most existing work on RL with observational disturbances proposes modifying RL algorithms (learn-69

ing to deal with perturbations through linear combinations of regularising loss terms or adversarial70

terms) that come at the cost of explainability (in terms of sub-optimality bounds) and verifiability,71

since the induced changes in the new policies result in a loss of convergence guarantees. Our main72

contributions are summarised in the following points.73

Structure of Robust Policy Sets. We consider general unknown stochastic disturbances and for-74

mulate a quantitative definition of observational robustness that allows us to characterise the sets of75

robust policies for any MDP in the form of operator-invariant sets. We analyse how the structure of76

these sets depends on the MDP and noise kernel, and obtain an inclusion relation (cf. the Inclusion77

Theorem, Section 3) providing intuition into how we can search for robust policies more effectively.178

Verifiable Robustness through LRL. The proposed characterisation and analysis allows us to79

cast robustness as a lexicographic optimisation objective and propose a meta-algorithm that can be80

applied to any existing policy gradient algorithm: Lexicographically Robust Policy Gradient (LRPG).81

Compared to existing approaches for observational robustness, LRPG allows us to:82

1. Retain policy sub-optimality up to a specified tolerance while maximising robustness.83

2. Formally control the utility-robustness trade-off through this design tolerance.84

1We claim novelty on the application of such concepts to the understanding and improvement of robustness in
disturbed observation RL. Although we have not found our results in previous work, there are strong connections
between Sections 2-3 in this paper and the literature on planning for POMDPs [Spaan and Vlassis, 2004, Spaan,
2012] and MDP invariances [Ng et al., 1999, van der Pol et al., 2020, Skalse et al., 2022a].
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(a) PG algorithms when robustness terms are added
to the cost function indiscriminately.
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{π ∈ Π : J∗ − J(π) ≤ ϵ}

(b) In LRPG, the policy is guaranteed (up to the
original algorithm used) to converge to an ϵ ball of
Π∗, and from those, the most robust ones.

Figure 1: Qualitative representation of the proposed LRPG algorithm, compared to usual robustness-
inducing algorithms. The sets in blue are the maximally robust policies to be defined in the coming
sections. Through LRPG we guarantee that the policies will only deviate a bounded distance from
the original objective, and induce a search for robustness in the resulting valid policy set.

3. Preserve formal guarantees of the PG algorithm.85

We provide numerical examples on how this approach is applied to existing policy gradient algorithms,86

comparing them to previous work and verifying how the previously mentioned Inclusion Theorem87

helps to induce more robust policies while retaining algorithm optimality. Figure 1 represents a88

qualitative interpretation of the results in this work (the structure of the robust sets will become clear89

in following sections).90

1.2 Preliminaries91

Notation We use calligraphic letters A for collections of sets and ∆(A) as the space of proba-92

bility measures over A. For two probability distributions P, P ′ defined on the same σ−algebra F ,93

DTV (P∥P ′) = supA∈F |P (A)−P ′(A)| is the total variation distance. For two elements of a vector94

space we use ⟨·, ·⟩ as the inner product. We use 1n as a column-vector of size n that has all entries95

equal to 1. We say that an MDP is ergodic if for any policy the resulting Markov Chain (MC) is96

ergodic. We say that S is a n× n row-stochastic matrix if Sij ≥ 0 and each row of S sums to 1.97

Lexicographic Reinforcement Learning We provide an introduction to Policy-Based Lexico-98

graphic RL (PB-LRL) for an example with two objective functions. Consider a parameterised99

policy πθ with θ ∈ Θ, and two objective functions K1 and K2. PB-LRL uses a multi-timescale100

optimisation scheme to optimise θ faster for higher-priority objectives, iteratively updating the101

constraints induced by these priorities and encoding them via Lagrangian relaxation techniques102

[Bertsekas, 1997]. Let θ′ ∈ argmaxθ K1(θ). Then, PB-LRL can be used to find parameters103

θ′′ = argmaxθ K2(θ), such that K1(θ) ≥ K1(θ
′) − ϵ. This is done through the estimated104

gradient ascent update:105

θ ← projΘ
[
θ +∇θK̂(θ)

]
, λ← projR≥0

[
λ+ ηt(k̂1 − ϵt −K1(θ))

]
, (1)

where K̂(θ) := (β1
t +λβ2

t ) ·K1(θ)+β2
t ·K2(θ), λ is a Langrange multiplier, β1

t , β
2
t , ηt are learning106

rates2, and k̂1 is an estimate of K1(θ
′). Typically, we set ϵt → 0, though we can use other tolerances107

too, e.g., ϵt = 0.9 · k̂1. For more details on the convergence proofs and technicalities of PB-LRL we108

refer the reader to Skalse et al. [2022b].109

2 We assume all learning rates in this work αt(x, u) ∈ [0, 1] (βt, ηt...) satisfy the conditions∑∞
t=1 αt(x, u) = ∞ and

∑∞
t=1 αt(x, u)

2 < ∞.
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2 Observationally Robust Reinforcement Learning110

Robustness-inducing methods in model-free RL must address the following dilemma: How do we deal111

with uncertainty without an explicit mechanism to estimate such uncertainty during policy execution?112

Consider an example of an MDP where, at policy roll-out phase, there is a non-zero probability of113

measuring a “wrong” state. In such a scenario (even without adversarial uncertainty) optimal policies114

can be almost useless: measuring the wrong state can lead to executing unboundedly bad actions.115

This problem is represented by the following version of a noise-induced partially observable Markov116

Decision Process [Spaan, 2012].117

Definition 2.1. An observationally-disturbed MDP (DOMDP) is (a POMDP) defined by the tuple118

(X,U, P,R, T, γ) where X is a finite set of states, U is a set of actions, P : U × X 7→ ∆(X)119

is a probability measure of the transitions between states and R : X × U × X 7→ R is a reward120

function. The map T : X 7→ ∆(X) is a stochastic kernel induced by some unknown noise signal,121

such that T (y | x) is the probability of measuring y while the true state is x, and acts only on the122

state observations. At last γ ∈ [0, 1] is a reward discount.123

In a DOMDP3 agents can measure the full state, but the measurement will be disturbed by some124

unknown random signal in the policy deployment. Unlike the POMDP setting, the agent has access to125

the true state x during learning of the policies (i.e., the simulator is noise-free), but has no information126

about the noise kernel T or a way to estimate it. The difficulty of acting in such DOMDP is that127

the transitions are actually undisturbed and a function of the true state x, but agents will have to act128

based on disturbed states x̃ ∼ T (· | x). We then need to construct policies that will be as robust as129

possible against such noise, without being able to construct noise estimates. This setting, which is130

distinguished from the POMDP one, reflects many robotic problems, where we can design a policy131

for ideal noise-less conditions, and we know that at deployment there will likely be noise, data132

corruption, adversarial perturbations, etc., but we do not have a-priori knowledge on the structure133

of this disturbance. A (memoryless) policy for the agent is a stochastic kernel π : X 7→ ∆(U). For134

simplicity, we overload notation on π, denoting by π(x, u) as the probability of taking action u at135

state x under the stochastic policy π in the MDP, i.e., π(x, u) = Pr{u | x}. The value function of136

a policy π, V π : X 7→ R, is given by V π(x0) = E[
∑∞

t=0 γ
tR(xt, π(xt), xt+1)]. The action-value137

function of π (Q-function) is given by Qπ(x, u) =
∑

y∈X P (x, u, y)(R(x, u, y) + γV π(y)). We138

then define the objective function as J(π) := Ex0∼µ0 [V
π(x0)] with µ0 being a distribution of initial139

states, and we use J∗ := maxπ J(π) and π∗ as the optimal policy. If a policy is parameterised by140

θ ∈ Θ we write πθ and J(θ).141

Assumption 2.2. For any DOMDP and policy π, the resulting MC is irreducible and aperiodic.142

We now formalise a notion of observational robustness. Firstly, due to the presence of the stochastic143

kernel T , the policy we are applying is altered as we are applying a collection of actions in a possibly144

wrong state. This behaviour can be formally captured by:145

Pr{u | x, π, T} = ⟨π, T ⟩(x, u) :=
∑
y∈X

T (y | x)π(y, u), (2)

where ⟨π, T ⟩ : X 7→ ∆(U) is the disturbed policy, which averages the current policy given the error146

induced by the presence of the stochastic kernel. Notice that ⟨·, T ⟩(x) : Π 7→ ∆(U) is an averaging147

operator yielding the alteration of the policy due to noise. We can then define the robustness regret4:148

ρ(π, T ) := J(π)− J(⟨π, T ⟩). (3)

Definition 2.3 (Policy Robustness). We say that a policy π is κ-robust against a stochastic kernel T149

if ρ(π, T ) ≤ κ. If π is 0-robust we say it is maximally robust. We define the sets of κ-robust policies,150

Πκ := {π ∈ Π : ρ(π, T ) ≤ κ}, with Π0 being the set of maximally robust policies.151

One can motivate the characterisation and models above from a control perspective, where policies152

use as input discretised state measurements with possible sensor measurement errors. Formally153

ensuring robustness properties when learning RL policies will, in general, force the resulting policies154

to deviate from optimality in the undisturbed MDP. We propose then the following problem.155

3Definition 2.1 is a generalised form of the State-Adversarial MDP used by Zhang et al. [2020]: the
adversarial case is a particular form of DOMDP where T assigns probability 1 to one adversarial state.

4The robustness regret satisfies ρ(π∗, T ) ≥ 0 ∀T , and it allows us to directly compare the robustness regret
with the utility regret of the policy.
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Problem 1. For a DOMDP and a given tolerance level ϵ, derive a policy πϵ that satisfies J∗−J(πϵ) ≤156

ϵ as a prioritised objective and is as robust as possible according to Definition 2.3.157

3 Characterisation of Robust Policies158

An important question to be addressed, before trying to synthesise robust policies through LRL, is159

what these robust policies look like, and how they are related to DOMDP properties. The robustness160

notion in Definition 2.3 is intuitive and it allows us to classify policies. We begin by exploring what161

are the types of policies that are maximally robust, starting with the set of constant policies and set of162

fix point of the operator ⟨·, T ⟩, whose formal descriptions are now provided.163

Definition 3.1. A policy π : X 7→ ∆(U) is said to be constant if π(x) = π(y) for all x, y ∈ X , and164

the collection of all constant policies is denoted by Π̄. A policy π : X 7→ ∆(U) is called a fixed165

point of the operator ⟨·, T ⟩ if π(x) = ⟨π, T ⟩(x) for all x ∈ X . The collection of all fixed points will166

be denoted by ΠT .167

In other words, a constant policy is any policy that yields the same action distribution for any state,168

and a fixed point policy is any policy whose action distributions are un-altered by the noise kernel.169

Observe furthermore that ΠT only depends on the kernel T and the set5 X . We now present a170

proposition that links the two sets of policies in Definition 3.1 with our notion of robustness.171

Proposition 3.2. Consider a DOMDP as in Definition 2.1, the robustness notion given in Definition172

2.3 and the concepts in Definition 3.1, then we have that Π̄ ⊆ ΠT ⊆ Π0.173

The importance of Proposition 3.2 is that it allows us to produce (approximately) maximally robust174

policies by computing the distance of a policy to either the set of constant policies or to the fix point175

of the operator ⟨·, T ⟩, and this is at the core of the construction in Section 4. However, before this, let176

us introduce another set that is sandwiched between Π0 and ΠT . Let us assume we have a policy177

iteration algorithm that employs an action-value function Qπ and policy π. The advantage function178

for π is defined as Aπ(x, u) := Qπ(x, u) − V π(x) and can be used as a maximisation objective179

to learn optimal policies (as in, e.g., A2C [Sutton et al., 1999], A3C [Mnih et al., 2016]). We can180

similarly define the noise disadvantage (a form of negative advantage) of policy π as:181

Dπ(x, T ) := V π(x)− Eu∼⟨π,T ⟩(x)[Q
π(x, u)], (4)

which measures the difference of applying at state x an action according to the policy π with that182

of playing an action according to ⟨π, T ⟩ and then continuing playing an action according to π. Our183

intuition says that if it happens to be the case that Dπ(x, T ) = 0 for all states in the DOMDP, then184

such a policy is maximally robust. And this is indeed the case, as shown in the next proposition.185

Proposition 3.3. Consider a DOMDP as in Definition 2.1 and the robustness notion as in Definition186

2.3. If a policy π is such that Dπ(x, T ) = 0 for all x ∈ X , then π is maximally robust, i.e., let187

ΠD := {π ∈ Π : µπ(x)D
π(x, T ) = 0 ∀x ∈ X},

then we have that ΠD ⊆ Π0.188

So far we have shown that both the set of fixed points Π and the set of policies for which the189

disadvantage function is equal to zero ΠD are contained in the set of maximally robust policies. More190

interesting is the fact that the inclusion established in Proposition 3.2 and the one in Proposition 3.3191

can be linked in a natural way through the following Inclusion Theorem.192

Theorem 3.4 (Inclusion Theorem). For a DOMDP with noise kernel T , consider the sets Π,ΠT ,ΠD193

and Π0. Then, the following inclusion relation holds:194

Π ⊆ ΠT ⊆ ΠD ⊆ Π0.

Additionally, the sets Π,ΠT are convex for all MDPs and kernels T , but ΠD,Π0 may not be.195

Let us reflect on the inclusion relations of Theorem 3.4. The inclusions are in general not strict, and in196

fact the geometry of the sets (as well as whether some of the relations are in fact equalities) is highly197

5There is a (natural) bijection between the set of constant policies and the space ∆(U). The set of fixed
points of the operator ⟨·, T ⟩ also has an algebraic characterisation in terms of the null space of the operator
Id(·)− ⟨·, T ⟩. We are not exploiting the later characterisation in this paper.
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dependent on the reward function, and in particular on the complexity (from an information-theoretic198

perspective) of the reward function. As an intuition, less complex reward functions (more uniform)199

will make the inclusions above expand to the entire policy set, and more complex reward functions200

will make the relations collapse to equalities. The following Corollary illustrates this.201

Corollary 3.5. For any ergodic DOMDP there exist reward functions R and R such that the resulting202

DOMDP satisfies: (i) ΠD = Π0 = Π (any policy is max. robust) if R = R, (ii) ΠT = ΠD = Π0203

(only fixed point policies are maximally robust) if R = R.204

We can now summarise the insights from Theorem B.3 and Corollary 3.5 in the following conclusions:205

(1) The set Π is maximally robust, convex and independent of the DOMDP, (2) The set ΠT is206

maximally robust, convex, includes Π, and its properties only depend on T , (3) The set ΠD includes207

ΠT and is maximally robust, but its properties depend on the DOMDP.208

4 Robustness through Lexicographic Objectives209

We have now characterised robustness in a DOMDP and explored the relation between the sets of210

policies that are robust according to the definition proposed. We have seen in the Inclusion Theorem211

that several classes of policies are maximally robust, and our goal now is to connect these results with212

lexicographic optimisation. To be able to apply LRL results to our robustness problem we need to first213

cast robustness as a valid objective to be maximised, and then show that a stochastic gradient descent214

approach would indeed find a global maximum of the objective, therefore yielding a maximally215

robust policy. Then, this robustness objective can be combined with a primary reward-maximising216

objective K1(θ) = Ex0∼µ0
[V πθ (x0)] and any algorithm with certified convergence to solve Problem217

1. Policy-based LRL (PB-LRL) allows us to encode the idea that, when learning how to solve an RL218

task, robustness is important but not at any price, i.e., we would like to solve the original objective219

reasonably well6, and from those policies efficiently find the most robust one.220

4.1 Robustness Objectives221

We propose now a valid lexicographic objective for which a minimising solution yields a maximally222

robust policy. For this, we will perturb the policy during training according to the following logic. In223

the introduction, we emphasised that the motivation for this work comes partially from the fact that224

we may not know T in reality, or have a way to estimate it. However, the theoretical results until now225

depend on T . Our proposed solution to this lies in the results of Theorem 3.4. We can use a design226

generator T̃ to perturb the policy during training such that T̃ has the smallest possible fixed point set227

(i.e. the constant policy set), and any algorithm that drives the policy towards the set of fixed points228

of T̃ will also drive the policy towards fixed points of T : from Theorem 3.4, ΠT̃ ⊆ ΠT .229

Assumption 4.1. The design kernel T̃ satisfies ΠT̃ = Π230

We discuss further the choice and implications of using a design kernel T̃ in Section 5. One of the231

messages of the Inclusion Theorem is the fact that fixed point policies are maximally robust. Consider232

the objective to be minimised:233

KT̃ (θ) =
∑
x∈X

µπθ
(x)

1

2
∥πθ(x)− ⟨πθ, T̃ ⟩(x)∥22, (5)

Notice that optimising (5) projects the current policy onto the set of fixed points of the operator ⟨·, T̃ ⟩,234

and due to Assumption 2.2, which requires µπθ
(x) > 0 for all x ∈ X , the optimal solution is equal235

to zero if and only if there exists a value of the parameter θ for which the corresponding πθ is a236

fixed point of ⟨·, T̃ ⟩. In practice, the objectives are computed for a batch of trajectory sampled states237

Xs ⊂ X , and averaged over 1
|Xs| ; we denote these approximations with a hat. By applying standard238

stochastic approximation arguments, we can prove that convergence is guaranteed for a SGD iteration239

using∇θK̂T̃ (θ)(x) = (πθ(x)− πθ(y))∇θπθ(x), y ∼ T̃ (· | x) to the optimal solution of problem 5.240

For details and a proof, see Lemma B.3 in Appendix B.241

6The advantage of using LRL is that we need not know in advance how to define “reasonably well” for each
new task. Additionally, we obtain a hyper-parameter that directly controls the trade-off between robustness and
optimality: the tolerance ϵ. Through ϵ we determine how far we allow our resulting policy to be from an optimal
policy in favour of it being more robust.
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4.2 Lexicographically Robust Policy Gradient242

We present now the proposed LRPG meta-algorithm to achieve lex-243

icographic robustness for any policy gradient algorithm at choice.244

Algorithm 1 LRPG

input Simulator, T̃ , ϵ
initialise θ, critic (if using), λ, {β1

t , β
2
t , η}

set t = 0, xt ∼ µ0

while t < max_iterations do
perform ut ∼ πθ(xt)

observe rt, xt+1, sample y ∼ T̃ (· | x)
if K̂1(θ) not converged then

k̂1 ← K̂1(θ)
end if
update critic (if using)
update θ and λ using (1)

end while
output θ

From Skalse et al. [2022b], the convergence of245

PB-LRL algorithms is guaranteed as long as246

the original policy gradient algorithm (such as247

PPO [Liu et al., 2019] or A2C [Konda and Tsit-248

siklis, 2000, Bhatnagar et al., 2009]) for each249

single objective converges. We can then com-250

bine Lemma B.3 with these results to guarantee251

that Lexicographically Robust Policy Gradient252

(LRPG), Algorithm 1, converges to a policy that253

maximise robustness while remaining (approx-254

imately) optimal with respect to R.255

Theorem 4.2. Consider a DOMDP as in Def-256

inition 2.1 and let πθ be a parameterised pol-257

icy. Take K1(θ) = Ex0∼µ0 [V
πθ (x0)] to be com-258

puted through a chosen algorithm (e.g., A2C,259

PPO) that optimises K1(θ), and let K2(θ) =260

−KT̃ (θ). Given an ϵ > 0, if the iteration261

θ ← projΘ
[
θ +∇θK̂1

]
is guaranteed to con-262

verge to a parameter set θ∗ that maximises K1,263

and hence J (locally or globally), then LRPG converges a.s. under PB-LRL conditions to parameters264

θϵ that satisfy:265

θϵ ∈ argmin
θ∈Θ′

KT̃ (θ), such that K∗
1 ≥ K1(θ

ϵ)− ϵ, (6)

where Θ′ = Θ if θ∗ is globally optimal and a compact local neighbourhood of θ∗ otherwise.266

We reflect again on Figure 1. The main idea behind LRPG is that by formally expanding the267

set of acceptable policies with respect to K1, we may find robust policies more effectively while268

guaranteeing a minimum performance in terms of expected rewards. This addresses directly the269

premise behind Problem 1. In LRPG the first objective is still to minimise the distance J∗ − J(π) up270

to some tolerance. Then, from the policies that satisfy this constraint, we want to steer the learning271

algorithm towards a maximally robust policy, and we can do so without knowing T .272

5 Considerations on Noise Generators273

A natural question following Section 4.1 and the theoretical results in Section 4 is how to choose T̃ ,274

and how the choice influences the resulting policy robustness towards any other true T . In general,275

for any arbitrary policy utility landscape in a given MDP, there is no way of bounding the distance276

of the resulting policies for two different noise kernels T1, T2. As a counter-example, consider an277

MDP where there are 2 possible optimal policies π∗
1 , π

∗
2 , and take these two policies to be maximally278

different, i.e. DTV (π
∗
1∥π∗

2) = 1 ∀x ∈ X . Then, when using LRPG to obtain a robust policy, a slight279

deviation in the choice of T̃ can cause the gradient descent scheme to deviate from converging to π∗
1280

to converging to π∗
2 , yielding in principle a completely different policy. However, the optimality of281

the policy remains bounded: Through LRPG guarantees we know that, for both cases, the utility of282

the resulting policy will be at most ϵ far from the optimal. We can, thus, state the following.283

Corollary 5.1. Take T to be any arbitrary noise kernel, and T̃ to satisfy Assumption 4.1. Let π be a284

policy resulting from a LRPG algorithm. Assume that minπ′∈ΠT̃
DTV (π∥π′) = a for some a < 1.285

Then, it holds for any T that minπ′∈ΠT
DTV (π∥π′) ≤ a.286

That is, when using LRPG to obtain a robust policy π, the resulting policy is at most a far from287

the set of fixed points (and therefore a maximally robust policy) with respect to the true T . This is288

the key argument behind our choices for T̃ : A priori, the most sensible choice is a kernel that has289

no other fixed point than the set of constant policies. This fixed point condition is satisfied in the290

discrete state case for any T̃ that induces an irreducible Markov Chain, and in continuous state for291
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PPO on MiniGrid Environments A2C on MiniGrid Environments

Noise Vanilla LRPPO(K
u
T ) LRPPO(K

g
T ) SA-PPO Vanilla LRA2C(K

u
T ) LRA2C(K

g
T ) LRA2C(KD)

LavaGap
∅ 0.95±0.003 0.95±0.075 0.95±0.101 0.94±0.068 0.94±0.004 0.94±0.005 0.94±0.003 0.94±0.006
T1 0.80±0.041 0.95±0.078 0.93±0.124 0.88±0.064 0.83±0.061 0.93±0.019 0.89±0.032 0.91±0.088
T2 0.92±0.015 0.95±0.052 0.95±0.094 0.93±0.050 0.89±0.029 0.94±0.008 0.93±0.011 0.93±0.021

LavaCrossing
∅ 0.95±0.023 0.93±0.050 0.93±0.018 0.88±0.091 0.91±0.024 0.91±0.063 0.90±0.017 0.92±0.034
T1 0.50±0.110 0.92±0.053 0.89±0.029 0.64±0.109 0.66±0.071 0.78±0.111 0.72±0.073 0.76±0.098
T2 0.84±0.061 0.92±0.050 0.92±0.021 0.85±0.094 0.78±0.054 0.83±0.105 0.86±0.029 0.87±0.063

DynamicObstacles
∅ 0.91±0.002 0.91±0.008 0.91±0.007 0.91±0.131 0.91±0.011 0.88±0.020 0.89±0.009 0.91±0.013
T1 0.23±0.201 0.77±0.102 0.61±0.119 0.45±0.188 0.27±0.104 0.43±0.108 0.45±0.162 0.56±0.270
T2 0.50±0.117 0.75±0.075 0.70±0.072 0.68±0.490 0.45±0.086 0.53±0.109 0.52±0.161 0.67±0.203

Table 1: Reward values gained by LRPG and baselines on discrete control tasks.

any T̃ that satisfies a reachability condition (i.e. for any x0 ∈ X , there exists a finite time for which292

the probability of reaching any ball B ⊂ X of radius r > 0 through a sequence xt+1 = T (xt) is293

measurable). This holds for (additive) uniform or Gaussian disturbances.294

6 Experiments295

We verify the theoretical results of LRPG in a series of experiments on discrete state/action safety-296

related environments [Chevalier-Boisvert et al., 2018], and in continuous control tasks. We use A2C297

[Sutton and Barto, 2018] (LR-A2C), PPO [Schulman et al., 2017] (LR-PPO) and SAC [Haarnoja298

et al., 2018] (LR-SAC) for our implementations of LRPG. In all cases, the lexicographic tolerance299

was set to ϵ = 0.99k̂1 to deviate as little as possible from the primary objective. We compare against300

the baseline algorithms and against SA-PPO [Zhang et al., 2021] which is among the most effective301

(adversarial) robust RL approaches in literature. We trained 10 independent agents for each algorithm,302

and reported the scores of the median agent (as done in Zhang et al. [2020]) for 50 averaged roll-outs.303

Sampling T̃. To simulate T̃ we disturb x as x̃ = x + ξ for (1) a uniform bounded noise signal304

ξ ∼ U[−b,b] (T̃u) and (2) and a Gaussian noise (T̃ g) such that ξ ∼ N (0, 0.5). We test the resulting305

policies against a noiseless environment (∅), a kernel T1 = T̃u, a kernel T2 = T̃ g and against two306

different state-adversarial noise configurations as proposed by Zhang et al. [2021] to evaluate how307

effective LRPG is at rejecting adversarial disturbances. See Appendix C for details and bounds used.308

Robustness Objectives. If we do not have an estimator for the critic Qπ (e.g. PPO, A2C),309

Proposition 3.2 suggests that minimising the distance between π and ⟨π, T ⟩ can serve as a proxy to310

minimise the robustness regret, so we use objectives as defined in (5). We aim to test the hypothesis311

introduced through this work: If we have an estimator for the critic Qπ we can obtain robustness312

without inducing regularity in the policy using Dπ , yielding a larger policy subspace to steer towards,313

and hopefully achieving policies closer to optimal. With the goal of diving deeper into the results of314

Theorem 3.4, we consider the objective KD(θ) :=
∑

x∈X µπθ
(x) 12∥Dπθ (x, T )∥22. We use both in315

our experimental results, by modifying A2C to retain a Q critic.316

Robustness Results: Discrete Control. Firstly, we investigate the impact of LRPG PPO and A2C317

for discrete action-space problems on Gymnasium [Brockman et al., 2016]. Minigrid-LavaGap (fully318

observable), Minigrid-LavaCrossing (partially observable) are safe exploration tasks where the agent319

needs to navigate an environment with cliff-like regions. Minigrid-DynamicObstacles (stochastic,320

partially obserbvable) is a dynamic obstacle-avoidance environment. We use A2C to test the influence321

of KD vs. KT since the structure of the original cost functions are simpler than in PPO, and hence322

easier to compare between the scenarios above. With each objective function resulting in gradient323

descent steps that pull the policy towards different maximally robust sets (KT → ΠT and KD → ΠD324

respectively), we would expect to obtain increasing robustness for KD. The results are presented in325

Table 1. See Appendix C for the results against adversarial noise, learning curves and detailed results.326

327
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PPO on Continuous Environments SAC on Continuous Environments

Noise Vanilla LRPPO (Ku
T ) LRPPO (Kg

T ) SA-PPO Vanilla LRSAC (Ku
T ) LRSAC (Kg

T )

MountainCar
∅ 94.77±0.26 93.17±0.89 94.66±1.61 88.69±3.93 93.52±0.05 94.43±0.19 93.84±0.05
T1 88.67±1.41 91.46±1.22 94.91±1.35 88.41±3.99 1.89±65.31 71.81±13.04 76.90±7.11
T2 92.22±1.11 92.40±1.28 94.76±1.42 89.32±3.79 -27.82±73.10 72.93±8.57 69.41±13.03

LunarLander
∅ 267.99±38.04 269.76±22.93 243.08±37.03 220.18±98.78 268.96±51.52 275.17±14.04 282.24±15.95
T1 156.09±22.87 280.91±20.34 182.80±49.26 164.53 ±45.48 128.18±17.73 187.64±76.30 153.81±33.16
T2 158.02±46.57 276.76±16.20 212.62±37.56 221.84±73.61 140.92±20.61 187.82±25.27 158.18±28.60

BipedalWalker
∅ 265.39±82.36 261.39±83.19 276.66±44.85 251.60±103.08 236.39 ±157.03 302.56±70.79 313.56±52.17
T1 174.15±170.30 253.56±72.66 220.28±118.61 264.69±61.63 203.93 ±167.83 241.45±124.54 241.60±139.93
T2 135.16±182.30 243.27±89.86 265.37±80.60 255.21±90.61 84.10 ±198.12 198.20±151.64 229.75±166.87

Table 2: Reward values gained by LRPG and baselines on continuous control tasks.

Robustness Results: Continuous Control. We studied the effectiveness of LRPG on continuous328

control problems, and compared LR-PPO and LR-SAC to baselines for three different continuous329

control environments on Gymnasium [Brockman et al., 2016]: MountainCarContinuous, LunarLan-330

derContinuous and BipedalWalker-v3. Again, we trained 10 independent agents, and reported the331

scores of the median agent. The results for the different noise kernels tested are presented in Table 5.332

7 Discussion333

Experiments. We applied LRPG on PPO, A2C and SAC algorithms, for a set of discrete and contin-334

uous control environments. These environments are particularly sensitive to robustness problems;335

the rewards are sparse, and applying a sub-optimal action at any step of the trajectory often leads to336

terminal states with zero (or negative) reward. LRPG successfully induces lower robustness regrets in337

the tested scenarios, and the use of KD as an objective (even though we did not prove the convergence338

of a gradient based method with such objective) yields a better compromise between robustness339

and rewards. When compared to recent observational robustness methods, LRPG obtains similar340

robustness results while preserving the original guarantees of the chosen algorithm7. However, the341

improvements seem to be smaller for SAC, possibly due to the different nature of policy losses (SAC342

uses a Q function as a loss).343

Shortcomings. The motivation for LRPG comes from situations where, when deploying a model-free344

controller in a dynamical system, we do not have a way of estimating the noise generation. There is345

an alternative approach for robust RL, exploited in the reviewed literature, which consists in assuming346

a disturbance structure (e.g. adversarial noise) and training directly to optimise the rewards in the347

disturbed MDP. There is no clear answer on what approach is more rational, or more effective in348

practice. The choice would depend on the problem at hand, the possible existence of an adversary,349

the requirement (or lack thereof) for formal guarantees, etc. We cannot claim that our approach is350

better in every way; we show through this work that LRPG is a useful approach for learning policies351

in control problems where the noise sources are unknown and we need to retain certain formal352

guarantees of the algorithms used. However, training against adversarial noise would possibly yield353

higher robustness if tuned properly on many problems. An interesting direction would be to prove354

preservation of guarantees for adversarial noise losses.355

Robustness, Complexity and Invariances. Sections 2 and 3 discuss at large the structure, shape and356

dependence of the maximally robust policy sets. These insights help derive optimisation objectives to357

use in LRPG, but there is more to be said about how policy robustness is affected by the underlying358

MDP properties. We hint at this in the proof of Corollary 3.5. More regular (less complex in entropy359

terms, or more symmetric) reward functions (e.g., reward functions with smaller variance across360

the actions R(x, ·, y)) seem to induce larger robust policy sets. In other words, for a fixed policy, a361

more complex reward function yields larger robustness regrets as soon as any noise is introduced in362

the system. This raises questions on how to use these principles to derive more robust policies in a363

comprehensive way, but we leave these questions for future work.364

7it even outperforms in some cases, although this is probably highly problem dependent, so we do not claim
an improvement for every DOMDP
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A Examples and Further Considerations519

We provide here two examples to show how we can obtain limit scenarios Π0 = Π (any policy is520

maximally robust) or Π0 = ΠT (Example 1), and how for some MDPs the third inclusion in Theorem521

3.4 is strict (Example 2).522

Example 1 Consider the simple MDP in Figure 2. First, consider the reward function R1(x1, ·, ·) =523

10, R1(x2, ·, ·) = 0. This produces a “dummy” MDP where all policies have the same reward sum.524

Then, ∀T, π, V ⟨π,T ⟩ = V π , and therefore we have ΠD = Π0 = Π.525

x1 x2

{ 1
2 ,

1
2}

{ 1
2 ,

1
2}

{ 1
2 ,

1
2}

{ 1
2 ,

1
2}

Figure 2: Example MDP. Values in brackets represent {P (·, u1, ·), P (·, u2, ·)}.

Now, consider the reward function R2(x1, u1, ·) = 10, R2(·, ·, ·) = 0 elsewhere. Take a non-526

constant policy π, i.e., π(x1) ̸= π(x2). In the example DOMDP (assuming the initial state is drawn527

uniformly from X0 = {x1, x2}) one can show that at any time in the trajectory, there is a stationary528

probability Pr{xt = x1} = 1
2 . Let us abuse notation and write π(xi) = ( π(xi, u1) π(xi, u2) )⊤529

and R(xi) = ( R(xi, u1, ·) R(xi, u2, ·) )⊤. For the given reward structure we have R(x2) =530

( 0 0 )⊤, and therefore:531

J(π) = Ex0∼µ0

[ ∞∑
t=0

γtRt

]
=

1

2
⟨R(x1), π(x1)⟩

γ

1− γ
. (7)

Since the transitions of the MDP are independent of the actions, following the same principle as in
(7): J⟨π, T ⟩ = 1

2 ⟨R(x1), ⟨·, T ⟩(π)(x1)⟩ γ
1−γ . For any noise map ⟨·, T ⟩ ≠ Id, for the two-state policy

it holds that π /∈ ΠT =⇒ ⟨π, T ⟩ ≠ π. Therefore ⟨π, T ⟩(x1) ̸= π(x1) and:

J(π)− J(⟨π, T ⟩) = 5γ

1− γ
·
(
π(x1, 1)− ⟨π, T ⟩(x1, 1)

)
̸= 0,

which implies that π /∈ Π0.532

Example 2 Consider the same MDP in Figure 2 with reward function R(x1, u1, ·) = R(x2, u1, ·) =533

10, and a reward of zero for all other transitions. Take a policy π(x1) = (1 0), π(x2) = (0 1). The534

policy yields a reward of 10 in state x1 and a reward of 0 in state x2. Again we assume the initial535

state is drawn uniformly from X0 = {x1, x2}. Then, observe:536

J(π) = Ex0∼µ0

[ ∞∑
t=0

γtRt

]
=

1

2
⟨R(x1), π(x1)⟩

γ

1− γ
=

1

2

10γ

1− γ
=

5γ

1− γ
.

Define now noise map T (· | x1) = ( 12
1
2 ) and T (· | x2) = ( 12

1
2 ). Observe this noise map537

yields a policy with non-zero disadvantage, Dπ(x1, T ) =
5γ
1−γ −

(
5γ
1−γ − 2.5

)
= 2.5 and similarly538

Dπ(x2, T ) = −2.5, therefore π /∈ ΠD. However, the policy is maximally robust:539

J(⟨π, T ⟩) = 1

2
⟨R(x1), ⟨π, T ⟩(x1)⟩

γ

1− γ
+
1

2
⟨R(x2), ⟨π, T ⟩(x2)⟩

γ

1− γ
=

1

2

γ

1− γ

(
5+5

)
=

5γ

1− γ
.

(8)
Therefore, π ∈ Π0.540
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B Theoretical Results541

B.1 Auxiliary Results542

Theorem B.1 (Stochastic Approximation with Non-Expansive Operator). Let {ξt} be a random543

sequence with ξt ∈ Rn defined by the iteration:544

ξt+1 = ξt + αt(F (ξt)− ξt +Mt+1),

where:545

1. The step sizes αt satisfy Assumption 2.546

2. F : Rn 7→ Rn is a ∥ · ∥∞ non-expansive map. That is, for any ξ1, ξ2 ∈ Rn, ∥F (ξ1) −547

F (ξ2)∥∞ ≤ ∥ξ1 − ξ2∥∞.548

3. {Mt} is a martingale difference sequence with respect to the increasing family of σ−fields549

Ft := σ(ξ0,M0, ξ1,M1, ..., ξt,Mt).550

Then, the sequence ξt → ξ∗ almost surely where ξ∗ is a fixed point such that F (ξ∗) = ξ∗.551

Proof. See Borkar and Soumyanatha [1997].552

Theorem B.2 (PB-LRL Convergence). LetM be a multi-objective MDP with objectives Ki, i ∈553

{1, ...,m} of the same form. Assume a policy π is twice differentiable in parameters θ, and if using a554

critic Vi assume it is continuously differentiable on wi. Suppose that if PB-LRL is run for T steps,555

there exists some limit point w∗
i (θ) when θ is held fixed under conditions C on M, π and Vi. If556

limT→∞ Et[θ] ∈ Θϵ
1 for m = 1, then for any m ∈ N we have limT→∞ Et[θ] ∈ Θϵ

m where ϵ depends557

on the representational power of the parameterisations of π, Vi.558

Proof Sketch. We refer the interested reader to Skalse et al. [2022b] for a full proof, and here attempt559

to provide the intuition behind the result in the form of a proof sketch.560

Let us begin by briefly recalling the general problem statement: we wish to take a multi-objective561

MDPM with m objectives, and obtain a lexicographically optimal policy (one that optimises the562

first objective, and then subject to this optimises the second objective, and so on). More precisely,563

for a policy π parameterised by θ, we say that π is (globally) lexicographically ϵ-optimal if θ ∈ Θϵ
m,564

where Θϵ
0 = Θ is the set of all policies inM, Θϵ

i+1 := {θ ∈ Θϵ
i | maxθ′∈Θϵ

i
Ki(θ

′)−Ki(θ) ≤ ϵi},565

and Rm−1 ∋ ϵ ≽ 0.8566

The basic idea behind policy-based lexicographic reinforcement learning (PB-LRL) is to use a multi-567

timescale approach to first optimise θ using K1, then at a slower timescale optimise θ using K2 while568

adding the condition that the loss with respect to K1 remains bounded by its current value, and so on.569

This sequence of constrained optimisations problems can be solved using a Lagrangian relaxation570

[Bertsekas, 1999], either in series or – via a judicious choice of learning rates – simultaneously, by571

exploiting a separation in timescales [Borkar, 2008]. In the simultaneous case, the parameters of the572

critic wi (if using an actor-critic algorithm, if not this part of the argument may be safely ignored)573

for each objective are updated on the fastest timescale, then the parameters θ, and finally (i.e., most574

slowly) the Lagrange multipliers for each of the remaining constraints.575

The proof proceeds via induction on the number of objectives, using a standard stochastic approxi-576

mation argument [Borkar, 2008]. In particular, due to the learning rates chosen, we may consider577

those more slowly updated parameters fixed for the purposes of analysing the convergence of the578

more quickly updated parameters. In the base case where m = 1, we have (by assumption) that579

limT→∞ Et[θ] ∈ Θϵ
1. This is simply the standard (non-lexicographic) RL setting. Before continuing580

to the inductive step, Skalse et al. [2022b] observe that because gradient descent on K1 converges to581

globally optimal stationary point when m = 1 then K1 must be globally invex (where the opposite582

implication is also true) [Ben-Israel and Mond, 1986a].9583

8The proof in Skalse et al. [2022b] also considers local lexicographic optima, though for the sake of simplicity,
we do not do so here.

9A differentiable function f : Rn → R is (globally) invex if and only if there exists a function g : Rn×Rn →
Rn such that f(x1)− f(x2) ≥ g(x1, x2)

⊤∇f(x2) for all x1, x2 ∈ Rn [Hanson, 1981].
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The reason this observation is useful is that because each of the objectives Ki shares the same584

functional form, they are all invex, and furthermore, invexity is conserved under linear combinations585

and the addition of scalars, meaning that the Lagrangian formed in the relaxation of each constrained586

optimisation problem is also invex. As a result, if we assume that limT→∞ Et[θ] ∈ Θϵ
i as our587

inductive hypothesis, then the stationary point of the Lagrangian for optimising objective Ki+1 is588

a global optimum, given the constraints that it does not worsen performance on K1, . . . ,Ki. Via589

Slater’s condition [Slater, 1950] and standard saddle-point arguments [Bertsekas, 1999, Paternain590

et al., 2019], we therefore have that limT→∞ Et[θ] ∈ Θϵ
i+1, completing the inductive step, and thus591

the overall inductive argument.592

This concludes the proof that limT→∞ Et[θ] ∈ Θϵ
m. We refer the reader to Skalse et al. [2022b] for a593

discussion of the error ϵ, but intuitively it corresponds to a combination of the representational power594

of θ, the critic parameters wi (if used), and the duality gap due to the Lagrangian relaxation [Paternain595

et al., 2019]. In cases where the representational power of the various parameters is sufficiently high,596

then it can be shown that ϵ = 0.597

Lemma B.3. Let πθ be a fully-parameterised policy in a DOMDP, and αt a learning rate satisfying598

Assumption 2. Consider the following approximated gradient for objective KT̃ (π) and sampled point599

x ∈ X:600

∇θK̂T̃ (θ)(x) = (πθ(x)− πθ(y))∇θπθ(x), y ∼ T̃ (· | x). (9)
Then, the following iteration with x ∈ X and some initial θ0,601

θt+1 = θt − αt∇θK̂T̃ (θt) (10)

yields θ → θ̃ almost surely where θ̃ satisfies KT̃ (θ̃) = 0.602

Lemma B.3. We make use of standard results on stochastic approximation with non-expansive603

operators (specifically, Theorem B.1 in the appendix) Borkar and Soumyanatha [1997]. First, observe604

that for a fully parameterised policy, one can assume to have a tabular representation such that605

πθ(x, u) = θxu, and ∇θπθ(x) ≡ Id. We can then write the stochastic gradient descent problem in606

terms of the policy. Let y ∼ T̃ (· | x). Then:607

πt+1(x) = πt(x)− αt

(
πt(x)− πt(y)

)
=

= πt(x)− αt

(
πt(x)− ⟨πt, T̃ ⟩(x)−

(
πt(y)− ⟨πt, T̃ ⟩(x)

))
.

We now need to verify that the necessary conditions for applying Theorem B.1 hold. First, αt satisfies608

Assumption 2. Second, making use of the property ∥T̃∥∞ = 1 for any row-stochastic matrix T̃ , for609

any two policies π1, π2 ∈ Π:610

∥⟨π1, T̃ ⟩ − ⟨π2, T̃ ⟩∥∞ = ∥T̃ π1 − T̃ π2∥∞ = ∥T̃ (π1 − π2)∥∞ ≤ ∥T̃∥∞∥π1 − π2∥∞ = ∥π1 − π2∥∞.

Therefore, the operator ⟨·, T̃ ⟩ is non-expansive with respect to the sup-norm. For the final condition,611

we have612

Ey∼T̃ (·|x)

[
πt(y)− ⟨πt, T̃ ⟩(x) | πt, T̃

]
=

∑
y∈X

T̃ (y | x)πt(y)− ⟨πt, T̃ ⟩(x) = 0.

Therefore, the difference πt(y)− ⟨πt, T̃ ⟩(x) is a martingale difference for all x. One can then apply613

Theorem B.1 with ξt(x) ≡ πt(x), F (·) ≡ ⟨·, T̃ ⟩ and Mt+1 ≡ πt(y) − ⟨πt, T̃ ⟩(x) to conclude that614

πt(x)→ π̃(x) almost surely. Finally from assumption 2.2, for any policy all states x ∈ X are visited615

infinitely often, therefore πt(x) → π̃(x)∀x ∈ X =⇒ πt → π̃ and π̃ satisfies ⟨π̃, T̃ ⟩ = π̃, and616

KT̃ (π̃) = 0.617

B.2 Proofs618

We now present the proofs for the statements through the work.619

Proposition 3.2. If a policy π ∈ Π is a fixed point of the operator ⟨·, T ⟩, then it holds that ⟨π, T ⟩ = π.620

Therefore, one can compute the robustness of the policy π to obtain ρ(π, T ) = J(π)− J(⟨π, T ⟩) =621

J(π)− J(π) = 0 =⇒ π ∈ Π0. Therefore, ΠT ⊆ Π0.622
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For a discrete state and action spaces, the space of stochastic kernels K : X 7→ ∆(X) is equivalent623

to the space of row-stochastic |X| × |X| matrices, therefore one can write T (y | x) ≡ Txy as the624

xy−th entry of the matrix T . Then, the representation of a constant policy as an X×U matrix can be625

written as π = 1|X|v⊤, where 1|X| where v ∈ ∆(U) is any probability distribution over the action626

space. Observe that, applying the operator ⟨π, T ⟩ to a constant policy yields:627

⟨π, T ⟩ = T1|X|v
⊤. (11)

By the Perron-Frobenius Theorem [Horn and Johnson, 2012], since T is row-stochastic it has at least628

one eigenvalue eig(T ) = 1, and this admits a (strictly positive) eigenvector T1|X| = 1|X|. Therefore,629

substituting this in (11):630

⟨π, T ⟩ = T1|X|v
⊤ = 1|X|v

⊤ = π =⇒ Π ⊆ ΠT .

631

Proposition 3.3. Recall the definition in (2) and that the noise disadvantage function of a policy π is632

given by (4). We want to show that Dπ(x, T ) = 0 =⇒ ρ(π, T ) = 0. Taking Dπ(x, T ) = 0 one633

has a policy that produces an disadvantage of zero when noise kernel T is applied. Then,634

Dπ(x, T ) = 0 =⇒ Eu∼⟨π,T ⟩(x)[Q
π(x, u)] = V π(x) ∀x ∈ X. (12)

Now define the value of the disturbed policy

V ⟨π,T ⟩(x0) := E uk∼⟨π,T ⟩(xk),
xk+1∼P (·|xk,uk)

[ ∞∑
k=0

γkr(xk, uk)

]
,

and take:635

V ⟨π,T ⟩(x) = Eu∼⟨π,T ⟩(x),
y∼P (·|x,u)

[
r(x, u, y) + γV ⟨π,T ⟩(y)

]
.

We will now show that V π(x) = V ⟨π,T ⟩(x), for all x ∈ X . Observe, from (12) using V π(x) =636

Eu∼⟨π,T ⟩(x)[Qπ(x, u)], we have ∀x ∈ X:637

V π(x)− V ⟨π,T ⟩(x) =Eu∼⟨π,T ⟩(x)[Q
π(x, u)]− Eu∼⟨π,T ⟩(x)

y∼P (·|x,u)

[
r(x, u, y) + γV ⟨π,T ⟩(y)

]
=Eu∼⟨π,T ⟩(x)

y∼P (·|x,u)

[
r(x, u, y) + γV π(y)− r(x, u, y)− γV ⟨π,T ⟩(y)

]
=γEy∼P (·|x,u)

[
V π(y)− V ⟨π,T ⟩(y)

]
.

(13)

Now, taking the sup norm at both sides of (13) we get638

∥V π(x)− V ⟨π,T ⟩(x)∥∞ = γ
∥∥∥Ey∼P (·|x,u)

[
V π(y)− V ⟨π,T ⟩(y)

]∥∥∥
∞

. (14)

Observe that for the right hand side of (14), we have
∥∥Ey∼P (·|x,u)

[
V π(y)− V ⟨π,T ⟩(y)

]∥∥
∞ ≤639

∥V π(x)− V ⟨π,T ⟩(x)∥∞. Therefore, since γ < 1,640

∥V π(x)− V ⟨π,T ⟩(x)∥∞ ≤ γ∥V π(x)− V ⟨π,T ⟩(x)∥∞ =⇒ ∥V π(x)− V ⟨π,T ⟩(x)∥∞ = 0. (15)

Finally, ∥V π(x) − V ⟨π,T ⟩(x)∥∞ = 0 =⇒ V π(x) − V ⟨π,T ⟩(x) = 0 ∀x ∈ X , and V π(x) −641

V ⟨π,T ⟩(x) = 0∀x ∈ X =⇒ J(π) = J(⟨π, T ⟩) =⇒ ρ(π, T ) = 0.642

Inclusion Theorem 3.4. Combining Proposition 3.2 and Proposition 3.3, we simply need to show643

that ΠT ⊂ ΠD. Take π to be a fixed point of ⟨π, T ⟩. Then ⟨π, T ⟩ = π, and from the definition in (4):644

Dπ(x, T ) =V π(x)− Eu∼⟨π,T ⟩(x,·)[Q
π(x, u)]

=V π(x)− Eu∼π(x,·)[Q
π(x, u)]

=V π(x)− V π(x) = 0.

Therefore, π ∈ ΠD, which completes the sequence of inclusions.645
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To show convexity of Π,ΠT , first for a constant policy π ∈ Π, recall that we can write π = 1v⊤,646

where v ∈ ∆(U) is any probability distribution over the action space. Now take π1, π2 ∈ Π. For any647

α ∈ [0, 1], απ1 + (1− α)π2 = α1v⊤1 + (1− α)1v⊤2 = 1(αv1 + (1− α)v2)
⊤ ∈ Π.648

At last, for the set ΠT , assume there exist two different policies π1, π2 both fixed points of ⟨·, T ⟩.649

Then, for any α ∈ [0, 1], ⟨(απ1 + (1 − α)π2), T ⟩ = αTπ1 + (1 − α)Tπ2 = απ1 + (1 − α)π2.650

Therefore, any affine combination of fixed points is also a fixed point.651

Corollary 3.5. For statement (i), let R(·, ·, ·) = c for some constant c ∈ R. Then, J(π) =652

Ex0∼µ0
[
∑

t γ
trt | π] = cγ

1−γ , which does not depend on the policy π. For any noise kernel T653

and policy π, J(π)− J⟨π, T ⟩ = 0 =⇒ π ∈ Π0.654

For statement (ii) assume ∃π ∈ Π0 : π /∈ ΠT . Then, ∃x∗ ∈ X and u∗ ∈ U such that π(x∗, u∗) ̸=
⟨π, T ⟩(x∗, u∗). Let:

R(x, u, x′) :=

{
c if x = x∗ and u = u∗

0 otherwise
.

Then, E[R(x, π(x), x′] < E[R(x, ⟨π, T ⟩(x), x′] and since the MDP is ergodic x is visited infinitely655

often and J(π) − J(⟨π, T ⟩) > 0 =⇒ π /∈ Π0, which contradicts the assumption. Therefore,656

Π0 \ΠT = ∅ =⇒ Π0 = ΠT .657

Theorem 4.2. We apply the results from Skalse et al. [2022b] in Theorem B.2. Essentially, Skalse658

et al. [2022b] prove that for a policy gradient algorithm to lexicographically optimise a policy for659

multiple objectives, it is a sufficient condition that the stochastic gradient descent algorithm finds660

optimal parameters for each of the objectives independently. From Lemma B.3 we know that a policy661

gradient algorithm using the gradient estimate in (9) converges to a maximally robust policy, i.e.662

a set of parameters θ′ = argmaxθ KT̃ . Additionally, by assumption, the chosen algorithm for K1663

converges to an optimal point θ∗. While the two objective functions are not of the same form – as664

in Skalse et al. [2022b] – the fact they are both invex [Ben-Israel and Mond, 1986b] either locally665

or globally depending on the form of K1, implies that K̂ is also invex and hence that the stationary666

point θϵ computed by LRPG satisfies equation 6.667

Corollary 5.1. The proof follows by the inclusion results in Theorem 3.4. If ΠT̃ = Π, then ΠT̃ ⊆ ΠT668

for any other T . Then, the distance from π to the set ΠT is at most the distance to ΠT̃ .669

B.3 On Adversarial Disturbances and other Noise Kernels670

A problem that remains open after this work is what constitutes an appropriate choice of T̃ , and what671

can we expect by restricting a particular class of T̃ . We first discuss adversarial examples, and then672

general considerations on T̃ versus T .673

Adversarial Noise As mentioned in the introduction, much of the previous work focuses on
adversarial disturbances. We did not directly address this in the results of this work since our
motivation lies in the scenarios where the disturbance is not adversarial and is unknown. However,
following the results of Section 3, we are able to reason about adversarial disturbances. Consider an
adversarial map Tadv to be

⟨π, Tadv⟩(x) = π(y), y ∈ argmaxy∈Xad(x)
d
(
π(x), π(y)

)
,

with Xad(x) ⊆ X being a set of admissible disturbance states for x, and d(·, ·) is a distance measure674

between distributions (e.g. 2-norm).675

Proposition B.4. Constant policies are a fixed point of Tadv, and are the only fixed points if for all676

pairs x0, xk there exists a sequence {x0, ..., xk} ⊆ X such that xi ∈ Xad(xi).677

Proof. First, it is straight-forward that if π ∈ Π =⇒ ⟨π, Tadv⟩(x) = π(x). To show they are the678

only fixed points, assume that there is a non-constant policy π′ that is a fixed point of Tad. Then,679

there exists x, z such that π′(x) ̸= π′(z). However, by assumption, we can construct a sequence680

{x, ..., z} ⊆ X that connects x and z and every state in the sequence is in the admissible set of681

the previous one. Assume without loss of generality that this sequence is {x, y, z}. Then, if π′ is682
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a fixed point, ⟨π′, Tadv⟩(x) = π′(x), ⟨π′, Tadv⟩(y) = π′(y) and ⟨π′, Tadv⟩(z) = π′(z). However,683

π′(x) ̸= π′(z), so either π′(x) ̸= π′(y) =⇒ d(π′(x), π′(y)) ̸= 0 or π′(y) ̸= π′(z) =⇒684

d(π′(y), π′(z)) ̸= 0, therefore π′ cannot be a fixed point of Tadv .685

The main difference between an adversarial operator and the random noise considered throughout686

this work is that Tadv is not a linear operator, and additionally, it is time varying (since the policy is687

being modified at every time step of the PG algorithm). Therefore, including it as a LRPG objective688

would invalidate the assumptions required for LRPG to retain formal guarantees of the original PG689

algorithm used, and it is not guaranteed that the resulting policy gradient algorithm would converge.690

19



C Experiment Methodology691

We use in the experiments well-tested implementations of A2C, PPO and SAC from Stable Baselines692

3 [Raffin et al., 2021] to include the computation of the lexicographic parameters in (1).693

LRPG Parameters. The LRL parameters are initialised in all cases as β1
0 = 2, β2

0 = 1, λ = 0694

and η = 0.001. The LRL tolerance is set to ϵt = 0.99k̂1 to ensure we never deviate too much695

from the original objective, since the environments have very sparse rewards. We use a first order696

approximation to compute the LRL weights from the original LMORL implementation.697

C.1 Discrete Control698

The discrete control environments used can be seen in Figure 3. Since all the environments use a

(a) MiniGrid-LavaGap (b) MiniGrid-LavaCrossing (c) MiniGrid-DynamicObstacles

Figure 3: Screenshots of the environments used.

699
pixel representation of the observation, we use a shared representation for the value function and700

policy, where the first component is a convolutional network, implemented as in Zhang [2018]. The701

hyper-parameters of the neural representations are presented in Table 3.702

Layer Output Func.

Conv1 16 ReLu
Conv2 32 ReLu
Conv3 64 ReLu

Table 3: Shared Observation Layers

The actor and critic layers, for both algorithms, are a fully connected layer with 64 features as input703

and the corresponding output. We used in all cases an Adam optimiser. We optimised the parameters704

for each (vanilla) algorithm through a quick parameter search, and apply the same parameters for the705

Lexicographically Robust versions.706

LavaGap LavaCrossing DynamicObstacles
Parallel Envs 16 16 16
Steps 2 · 106 2 · 106 8× 106

γ 0.99 0.99 0.98
α 0.00176 0.00176 0.00181
ϵ(Adam) 10−8 10−8 10−8

Grad. Clip 0.9 0.9 0.5
Gae 0.95 0.95 0.95
Rollout 64 64 64
E. Coeff 0.01 0.014 0.011
V. Coeff 0.05 0.05 0.88

Table 4: A2C Parameters
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LavaGap LavaCrossing DynamicObstacles
Parallel Envs 8 8 8
Steps 6 · 106 2 · 106 8× 105

γ 0.95 0.99 0.97
α 0.001 0.001 0.001
ϵ(Adam) 10−8 10−8 10−8

Grad. Clip 1 1 0.1
Ratio Clip 0.2 0.2 0.2
Gae 0.95 0.95 0.95
Rollout 256 512 256
Epochs 10 10 10
E. Coeff 0 0.1 0.01

Table 5: PPO Parameters

For the implementation of the LRPG versions of the algorithms, in all cases we allow the algorithm to707

iterate for 1/3 of the total steps before starting to compute the robustness objectives. In other words,708

we use K̂(θ) = K1(θ) until t = 1
3 max_steps, and from this point we resume the lexicographic709

robustness computation as described in Algorithm 1. This is due to the structure of the environments710

simulated. The rewards (and in particular the positive rewards) are very sparse in the environments711

considered. Therefore, when computing the policy gradient steps, the loss for the primary objective712

is practically zero until the environment is successfully solved at least once. If we implement the713

combined lexicographic loss from the first time step, many times the algorithm would converge to a714

(constant) policy without exploring for enough steps, leading to convergence towards a maximally715

robust policy that does not solve the environment.716

Noise Kernels. We consider two types of noise; a normal distributed noise T̃ g and a uniform717

distributed noise T̃u. For the environments LavaGap and DynamicObstacles, the kernel T̃u produces718

a disturbed state x̃ = x + ξ where ∥ξ∥∞ ≤ 2, and for LavaCrossing ∥ξ∥∞ ≤ 1.5. The normal719

distributed noise is in all cases N (0, 0.5). The maximum norm of the noise is quite large, but this720

is due to the structure of the observations in these environments. The pixel values are encoded as721

integers 0 − 9, where each integer represents a different feature in the environment (empty space,722

doors, lava, obstacle, goal...). Therefore, any noise ∥ξ∥∞ ≤ 0.5 would most likely not be enough to723

confuse the agent. On the other hand, too large noise signals are unrealistic and produce pathological724

environments. All the policies are then tested against two “true" noise kernels, T1 = T̃u and T2 = T̃ g .725

The main reason for this is to test both the scenarios where we assume a wrong noise kernel, and the726

case where we are training the agents with the correct kernel.727

Comparison with SA-PPO. One of the baselines included is the State-Adversarial PPO algorithm728

proposed in Zhang et al. [2020]. The implementation includes an extra parameter that multiplies the729

regularisation objective, kppo. Since we were not able to find indications on the best parameter for730

discrete action environments, we implemented kppo ∈ {0.1, 1, 2} and picked the best result for each731

entry in Table 1. Larger values seemed to de-stabilise the learning in some cases. The rest of the732

parameters are kept as in the vanilla PPO implementation.733

C.1.1 Extended Results: Adversarial Disturbances734

Even though we do not use an adversarial attacker or disturbance in our reasoning through this work,735

we implemented a policy-based state-adversarial noise disturbance to test the benchmark algorithms736

against, and evaluate how well each of the methods reacts to such adversarial disturbances.737

Adversarial Disturbance We implement a bounded policy-based adversarial attack, where at each738

state x we maximise for the KL divergence between the disturbed and undisturbed state, such that the739

adversarial operator is:740

T ε
adv(y | x) = 1 =⇒ y ∈ argmax

x̃
DKL(π(x), π(x̃))

s.t. ∥x− x̃∥2 ≤ ε.
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PPO on MiniGrid Environments A2C on MiniGrid Environments

Noise Vanilla LRPPO(K
u
T ) LRPPO(K

g
T ) SA-PPO Vanilla LRA2C(K

u
T ) LRA2C(K

g
T ) LRA2C(KD)

LavaGap
∅ 0.95±0.003 0.95±0.075 0.95±0.101 0.94±0.068 0.94±0.004 0.94±0.005 0.94±0.003 0.94±0.006
T1 0.80±0.041 0.95±0.078 0.93±0.124 0.88±0.064 0.83±0.061 0.93±0.019 0.89±0.032 0.91±0.088
T2 0.92±0.015 0.95±0.052 0.95±0.094 0.93±0.050 0.89±0.029 0.94±0.008 0.93±0.011 0.93±0.021
T 0.5
adv 0.56±0.194 0.93±0.101 0.91±0.076 0.90±0.123 0.92±0.034 0.94±0.003 0.94±0.007 0.93±0.015

T 1
adv 0.20±0.243 0.90±0.124 0.68±0.190 0.90±0.135 0.75±0.123 0.94±0.006 0.92±0.038 0.88±0.084

T 2
adv 0.01±0.051 0.71±0.251 0.21±0.357 0.87±0.116 0.27±0.119 0.79±0.069 0.68±0.127 0.56±0.249

LavaCrossing
∅ 0.95±0.023 0.93±0.050 0.93±0.018 0.88±0.091 0.91±0.024 0.91±0.063 0.90±0.017 0.92±0.034
T1 0.50±0.110 0.92±0.053 0.89±0.029 0.64±0.109 0.66±0.071 0.78±0.111 0.72±0.073 0.76±0.098
T2 0.84±0.061 0.92±0.050 0.92±0.021 0.85±0.094 0.78±0.054 0.83±0.105 0.86±0.029 0.87±0.063
T 0.5
adv 0.29±0.098 0.91±0.081 0.91±0.054 0.87±0.045 0.56±0.039 0.51±0.089 0.43±0.041 0.68±0.126

T 1
adv 0.03±0.022 0.83±0.122 0.86±0.132 0.87±0.059 0.27±0.158 0.25±0.118 0.17±0.067 0.43±0.060

T 2
adv 0.0±0.004 0.50±0.171 0.38±0.020 0.82±0.072 0.06±0.056 0.04±0.030 0.01±0.008 0.09±0.060

DynamicObstacles
∅ 0.91±0.002 0.91±0.008 0.91±0.007 0.91±0.131 0.91±0.011 0.88±0.020 0.89±0.009 0.91±0.013
T1 0.23±0.201 0.77±0.102 0.61±0.119 0.45±0.188 0.27±0.104 0.43±0.108 0.45±0.162 0.56±0.270
T2 0.50±0.117 0.75±0.075 0.70±0.072 0.68±0.490 0.45±0.086 0.53±0.109 0.52±0.161 0.67±0.203
T 0.5
adv 0.74±0.230 0.89±0.118 0.85±0.061 0.90±0.142 0.46±0.214 0.55±0.197 0.51±0.371 0.62±0.249

T 1
adv 0.26±0.269 0.79±0.157 0.68±0.144 0.84±0.150 0.19±0.284 0.35±0.197 0.23±0.370 0.10±0.379

T 2
adv -0.49±0.312 0.51±0.234 0.33±0.202 0.55±0.170 -0.54±0.209 -0.21±0.192 -0.53±0.261 -0.51±0.260

Table 6: Extended Reward Results.

The optimisation problem is solved at every point by using a Stochastic Gradient Langevin Dynamics741

(SGLD) optimiser. The results are presented in Table 6.742

This type of adversarial attack with SGLD optimiser was proposed in Zhang et al. [2020]. As one can743

see, the adversarial disturbance is quite successful at severely lowering the obtained rewards in all744

scenarios. Additionally, as expected SA-PPO was the most effective at minimizing the disturbance745

effect (as it is trained with adversarial disturbances), although LRPG produces reasonably robust746

policies against this type of disturbances as well. At last, A2C appears to be much more sensitive to747

adversarial disturbances than PPO, indicating that the policies produced by PPO are by default more748

robust than A2C.749

C.2 Continuous Control750

The continuous control environments simulated are MountainCar, LunarLander and BipedalWalker.751

The policies used are in all cases MLP policies with ReLU gates and a (64, 64) feature extractor plus752

a fully connected layer to output the values and actions unless stated otherwise. The hyperparameters753

can be found in tables 7 and 8. The implementation is based on Stable Baselines 3 [Raffin et al.,754

2021] tuned algorithms.755

Noise Kernels. We consider again two types of noise; a normal distributed noise T̃ g and a uniform756

distributed noise T̃u. In all cases, algorithms are implemented with a state observation normalizer.757

That is, assimptotically all states will be observed to be in the set (−1, 1). For this reason, the uniform758

noise is bounded at lower values than for the discrete control environments. For BipedalWalker759

∥ξ∥∞ ≤ 0.05 and for Lunarlander and MountainCar ∥ξ∥∞ ≤ 0.1. Larger values were shown to760

destabilize learning.761
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(a) LavaGap with PPO (b) LavaGap with A2C

(c) LavaCrossing with PPO (d) LavaCrossing with A2C

(e) DynamicObstacles with PPO (f) DynamicObstacles with SAC

Figure 4: Learning Plots for Discrete Control Environments.

MountainCarContinuous LunarLanderContinuous BipedalWalker-v3
Parallel Envs 1 16 32
Steps 2× 104 1× 106 5× 106

γ 0.9999 0.999 0.999
α 3× 10−4 3× 10−4 3× 10−4

Grad. Clip 5 0.5 0.5
Ratio Clip 0.2 0.2 0.18
Gae 0.9 0.98 0.95
Epochs 10 4 10
E. Coeff 0.00429 0.01 0

Table 7: PPO Parameters for Continuous Control
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MountainCarContinuous LunarLanderContinuous BipedalWalker-v3
Steps 5× 104 5× 105 5× 105

γ 0.9999 0.99 0.98
α 3× 10−4 7.3× 10−4 7.3× 10−4

τ 0.01 0.01 0.01
Train Freq. 32 1 64
Grad. Steps 32 1 64
MLP Arch (64,64) (400,300) (400,300)

Table 8: SAC Parameters for Continuous Control

(a) MountainCar with PPO (b) MountainCar with SAC

(c) LunarLander with PPO (d) LunarLander with SAC

(e) BipedalWalker with PPO (f) BipedalWalker with SAC

Figure 5: Learning Plots for Continuous Control Environments.

Learning processes. In general, learning was not severlely affected by the LRPG scheme. However,762

it was shown to induce a larger variance in the trajectories observed, as seen in LunarLander with763

LR-SAC and BipedalWalker with LR-SAC.764
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