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Abstract— This paper studies finite-horizon safety guarantees
for discrete-time piece-wise affine systems with stochastic noise
of unknown distributions. Our approach is based on a novel
approach to synthesise a stochastic barrier function from noise
data. In particular, we first build a chance-constraint tightening
to obtain an inner approximation of a stochastic program.
Then, we apply this methodology for stochastic barrier function
design, yielding a robust linear program to which the scenario
approach theory applies. In contrast to existing approaches,
our method is data efficient as it only requires the number
of data to be proportional to the logarithm in the negative
inverse of the confidence level and is computationally efficient
due to its reduction to linear programming. Furthermore, while
state-of-the-art methods assume known statistics on the noise
distribution, our approach does not require any information
about it. We empirically evaluate the efficacy of our method
on various verification benchmarks. Experiments show a sig-
nificant improvement with respect to state-of-the-art, obtaining
tighter certificates with a confidence that is several orders of
magnitude higher.

I. INTRODUCTION

Modern autonomous systems are often uncertain, due to
e.g., sensor noise or unknown dynamics, and are commonly
employed in safety-critical applications, such as automated
driving [1] or robotics [2]. These applications require formal
guarantees of safety in order for the system to be deployed
in real-life. Consequently, computing such guarantees for
stochastic systems represents an important, but non-trivial,
area of research [3]. Existing approaches to address this prob-
lem either rely on abstractions, where the original system
is abstracted into a transition system [4], or leverage the
concept of Stochastic Barrier Functions (SBFs) [5]. SBFs
are Lyapunov-like functions that can be employed to bound
the probability that a dynamical system will remain safe for
a given time horizon, without the need to explicitly evolve
the system over time. A common assumption for the vast
majority of the existing approaches is that the distribution
of the system is known, and often either Gaussian or of
bounded support [5, 6]. Unfortunately, in practice, the noise
characteristics of the system are generally not known [7, 8].
This leads to the main question of this paper: how can we
compute formal certificates of safety for stochastic systems
with unknown noise distribution?

In this paper, we present a data-driven framework for
the design of SBFs for piece-wise affine (PWA) stochastic
systems with unknown noise distribution. Because of their
modelling flexibility and of the technical advantages coming
from their local linear behaviour, PWA systems are a class
of non-linear systems widely employed to model dynamical
systems [9]. By relying on tools from probability theory and
convex optimization, we show that the problem of synthe-
sizing a SBF for this class of systems can be reformulated
as a chance-constrained optimisation problem [10]. This
reformulation allows us to employ the scenario approach
theory to devise a data-driven framework to synthesize SBFs
with high confidence. We show that the resulting approach
is data-efficient, as it only requires the amount of data to
be logarithmic in the negative inverse of the confidence,
and is scalable, as it reduces to the solution of a Linear
Programming (LP) problem. We experimentally evaluate the
performance of our method on various systems including
a model of a vehicle in windy conditions. Our analysis
illustrates how our approach substantially outperforms state-
of-the-art comparable methods both in terms of tightness of
bounds and amount of data required.

To summarize, the main contributions of this paper are:

o A data-driven method based on the scenario approach

to design piece-wise affine stochastic barrier functions.

e A novel inner chance-constrained approximation to

stochastic programming.

o Empirical studies that illustrates the performance of the

proposed method compared to state-of-the-art.

The structure of the paper is as follows: Section II reviews
convex and scenario optimisation, which are used exten-
sively throughout the paper. Section III describes the safety
certification problem and Section IV how SBFs formally
can guarantee safety. In Section V are the main results of
this paper; namely the inner approximation to stochastic
programming and data-driven SBF design. Empirical studies
are reported in Section VI.

A. Related works

Stochastic barrier functions (SBFs) were first studied in
[11] to bound the probability that a stochastic system exits
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a given closed set in a given time horizon using super-
martingale theory. Since then, various works have employed
SBFs to study non-linear stochastic systems with approaches
including sum-of-squares (SoS) optimization [5, 6, 12-14]
and relaxations to convex programming [15, 16]. However,
all these methods assume that the model of the system is
fully known. A recent set of works have started to study
data-driven approaches to design SBFs for stochastic systems
with partially unknown dynamics, which can be employed to
obtain guarantees of safety with a confidence [13, 17]. These
approaches replace the stochastic program for synthesising
SBFs with a Sample Average Approximation (SAA)-based
program, meaning that the expectation is replaced by the
sample average with a probabilistic guarantee of satisfaction
of the original expectation constraint through concentration
inequalities. However, these methods require an amount of
data that is proportional to the negative inverse of the confi-
dence and assume known statistics on the noise distribution.
In contrast, our approach requires a number of data that is
logarithmic in the negative inverse of the confidence and does
not require any knowledge on the noise distribution.

Data-driven verification of stochastic systems is a rela-
tively new area to address the problem of verifying (par-
tially) unknown systems [13, 17-21]. To compute formal
guarantees for non-linear systems, apart from the SAA
approach described in the previous paragraph, existing lit-
erature focuses either on the scenario approach [19-21] or
on Gaussian processes [4, 22] or on distributional-robust
approaches [7]. In particular, in [19-21] the authors rely on
the data-efficiency of the scenario approach theory to build
abstractions of the original system with high confidence of
correctness, while in [4, 22] error bounds on performing GP
regression are employed to again build abstractions that are
employed to perform probabilistic model checking of the
unknown system. However, all these methods are abstraction-
based. Consequently, they suffer from the scalability issues
inherent with abstraction-based frameworks. In this paper,
our approach will combine the data-efficiency of the scenario
approach with the flexibility of SBFs.

B. Notation

The set of real, non-negative real, and natural numbers
are denoted with R, R>(, and N respectively. Vectors in the
Euclidean space will be denoted by the letter z € R™ and
random variables in R™ will be denoted with bold font x.
Subscripts will be used to denote a collection of elements,
ie., x1,...,%, denote different vectors in the same space.
A subset X of R™ is convex if Az; + (1 — N)ze € X, for
all z1,22 € X and A € [0,1]. A polyhedron P C R" is
a convex set defined as P = {& € R" : Hx < h}, where
the matrix H € R™*™ and the vector h € R™ are given,
and the inequality is interpreted element-wise. This form is
called a half-space representation. A function f : R"” —
R is convex if and only if its epigraph epi(f), defined as
epi(f) = {(z,t) € R*"™! : f(x) < t}, is a convex set of
R"*1, Optimisation variables will be denoted by the letter z
to distinguish it from the state-space variable x.

II. PRELIMINARIES

In this section, we review some concepts used extensively
throughout the paper.

a) Robust linear programming: Robust linear program-
ming (LP) [23] forms a backbone in this paper, hence we
will reiterate its definition and crucial results. Consider the
following robust LP problem for polyhedron P

min ¢’z

S (1)

s.t. z x<b, foralzxzeP.
The following result relates robust LP to regular LP through
strong duality, allowing one to recast Problem (1) as a LP
problem.

Proposition 1 (Strong duality of robust LP [23]):

Consider the robust LP problem in Problem (1) and the
following optimisation problem

min ¢’z
EDN
s.t. h'A<D (2)
H' A=z X>0.
Let sets
Z={zeR%:supz'x <b},
T€EP

Z'={zeR":INERY,, h'A<b, H A=z},

be the feasible set of Problem (1) and the feasible set of
Problem (2) projected onto its first d coordinates, respec-
tively. Then we have that Z = Z’.

Proposition 1 allows us to solve a robust LP problem by
means of regular LP in a lifted space, provided we have a
half-space representation of P available.

b) Scenario optimization: The scenario approach the-
ory establishes sample complexity guarantees for the prob-
ability of constraint violation of an uncertain optimisation
problem [24]. In other words, the theory quantifies the
number of samples that is necessary to generate, with a given
confidence level, a feasible solution for a chance-constrained
optimisation problem. A chance-constrained optimisation
problem is defined as follows: let (£, F,P) be a probability
space, where () is the sample space, F is a o-algebra
over €2, and PP is a probability measure over F. Assume
S = {wi,...,wn} is a set of independent samples from
the probability measure P. The set .S belongs to the space
(N, @y F,PY), where QY is the N-fold cartesian product
of Q, and @y F is the product o-algebra generated by the
o-algebra F and, due to independence, PV represents the
induced measure on %V [24]. A chance-constrained program
is defined as

min ¢z

N 3)
s.t. P{lwe:g(z,w) <0} >1—g¢,

where z € R? is the optimisation variable, ¢ € R? is the
objective cost, g : R x  — R is a function that is convex
in z for each value of w and measurable in w for each value
of z, and € € (0,1) is a given bound on constraint violation.
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At the core of the scenario approach is the construction
of the scenario program
min ¢’z
: 4)
s.t. g(z,w) <0, forallwels.
and studying the probability of constraint violation associated
with the optimal solution of Problem (4). To this end, we
need some standard assumption [24].

Assumption 1: Consider the scenario program in Problem
(4). We assume that:

o PV _almost surely, the feasible set given by Z = {z €
R? : g(z,w) < 0, forallw € S}, has non-empty
interior.

o PN.almost surely, the optimal solution exists and is
unique.

Denote by z*(S) the unique, optimal solution of Problem
(4). Notice that 2*(S) is a random variable from QV to R%.
The probability of constraint violation associated with z*(.S)
is given by V(z) =P{w € Q : g(z,w) > 0}.

Proposition 2 ([24]): Let N € N represent the number of
available samples and e € (0, 1) be given. Consider Problem
(4) and suppose that Assumption 1 holds. Then we have that

d—1
PN{S € QN : V(2*(S)) > €} < Z <N)el(1 — )N,

. (3
=0

Proposition 2 will be key in establishing safety guarantees
for the class of stochastic models considered in this paper.

III. PROBLEM STATEMENT

In this section, we formally define the class of systems we
consider and probabilistic safety, the specification considered
in this paper.
A. Piece-wise affine stochastic dynamics

LetP = {P,..., P;} be apolyhedral partition of the state
space X C R", where each P;, i = 1,...,{ is given by its
half-space representation. Consider the following discrete-
time stochastic piece-wise affine (PWA) system:

x(k+1) = f(x(k)) +n(k), x(0) € Xo, )

where k£ € N denotes the (discrete) time index, Xg C S is a
set of initial states, and f : X — R"™ is a PWA vector field
given by

f(x) = fi(x) = Aiw + bi,

for some matrix A; € R™ ™ and vector b; € R". The
additive term (n(k))gen is a stochastic process defined in
the filtered probability space (2, F, (Fk)ken, P), where Fj,
is the natural filtration of the process' n(k), i.e., it is the

JTEPZ‘QR”,

"Notice that the stochastic process affecting the dynamics is a measurable
function from N X 2 to the Euclidean space R"™, as such, both processes
7 and x would have to be written as n(k,w) and x(k,w). For brevity,
however, we omit the dependence on w throughout the paper. When
computing probabilities associated with the process x(k,w), we use the
notation P{w € Q : x(k) € A, for all k € {1,...,T}}, where the reader
should have in mind that the process x is defined in the samples space 2.
Please refer to [25] for more details.

o-algebra generated by the random variables n(k’), k' <
k. Notice that (x(k))ren is also a stochastic process in
the space (2, F,P) that is, it is Fj_1-measurable [25]. In
simpler words, x(k) depends on the realisation of noise 7(k’)
for all k' < k —1.

Assumption 2: We assume that n(k) is independent and
identically distributed (iid.) for all k£ € N.

Formally, n is a measurable function N x 2 — R",
but by the iid. assumption, (1(k))ren can be interpreted as
a sequence of identically distributed random variables. As
such, we may omit the dependence on k when referring to
the time-invariant random variable and write n(w).

B. Time-bounded probabilistic safety

Our goal is to study probabilistic safety for System (5).

Definition 1 (Probabilistic safety [5]): Let T € N be a
time horizon and S be a measurable subset of X2. We define
probability safety for System (5) as

C(S,T)=P{lweQ:x(k)eSforal ke{0,...,T}}.
(6)

We assume that, while f is known, 7 is unknown and
we can only generate iid. samples from it. Under these
assumptions, our goal in this paper is to compute a (non-
trivial) lower bound on ((S,T") for System (5).

Our approach is based on using the sampled data to
synthesize a piece-wise affine (PWA) Stochastic Barrier
Function (SBF) for System (5) with high confidence. In order
to do that, in Section V-A we develop a novel and powerful
inner approximation for the feasible set of stochastic pro-
grams in terms of chance-constrained optimisation. This re-
sult is employed in Section V-B to use the scenario approach
to synthesize SBF for System (5) with high confidence and
by requiring a number of data logarithmic in the negative
inverse of the confidence. In Section V-C, we show that in
the setting considered in this paper the resulting optimization
problem reduces to LP, thus enabling efficient and scalable
synthesis. Before, in the next section, we review SBFs and
how they can be employed to guarantee a lower bound on
(S, 7).

IV. STOCHASTIC BARRIER FUNCTION (SBF)

SBFs are Lyapunov-like conditions commonly employed
to compute the safety probability of stochastic systems [5].

Definition 2 (Stochastic Barrier Function): Let U = X \
S be the unsafe set and X the set of initial states, with
Xo C &, then a non-negative function B : X — Ry
is called a Stochastic Barrier Function if there exist non-
negative constants 7y, ¢ such that

B(z) < #, forall z € X, @)
B(z) > 1, forall z €U, (8)
E[B(f(z) +n(w))] < B(z)+¢c, foralzeS. (9)

The conditions of Definition 2 lead to a lower bound on
¢(S,T), as described in the next proposition.

2If X # R™ then it may be necessary to replace x(k) with an equivalent
stopped process x(k) [6].
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Proposition 3 ([11, Chapter 3, Theorem 3]): Let B be a
SBF satisfying the conditions in Definition 2 for System (5),
time horizon 7', and safe set S. Then, it holds that {(S,T) >
1—(y+cl).

Thanks to Proposition 3, a sufficient condition to establish a
lower bound on the safety probability is to design a SBF that
satisfies Equations (7)-(9). This can be obtained by solving
the following stochastic program

min

+cT
v>0re20,0 ’

(BP)
subject to the conditions in Definition 2. In other words,
synthesis of a SBF can be framed as a minimisation over ~y+
cT'. In this optimisation problem, the expectation condition
(Equation (9)) can generally be computed analytically only
under some strong assumptions on the noise distribution [6,
26]. Our approach proposes a new, inner chance-constrained
approximation of Problem (BP), which allows us to rely on
tools from scenario optimisation to synthesize a barrier [24].
The resulting approach is a distribution-free, data-driven
method to obtain a SBF as a safety certificate with a high
confidence of validity. Note that to guarantee the convexity
of Problem (BP), B is generally restricted to be either a SoS
polynomial or an exponential function [6]. In this paper, also
motivated by the structure of System (5), we will consider
piece-wise affine B, which have the flexibility to be able to
model arbitrarily well any continuous function assuming the
number of pieces of B is large enough.

V. DATA-DRIVEN STOCHASTIC BARRIER FUNCTION
DESIGN

In this section, we present the main results of this paper.
Namely, an inner approximation of the feasible set of Prob-
lem (BP) in terms of a chance-constrained problem (Section
V-A), how the chance-constrained approximation enables use
the scenario approach for data-driven synthesis (Section V-
B), and a LP formulation of the scenario program for efficient
and scalable certification (Section V-C).

A. A novel inner chance-constrained approximation of
stochastic programs

Consider the following stochastic program, which gener-
alizes Problem (BP),
min ¢’z
# (SP)
s.t. E{g(z,z,nw))} < h(x,z), forallzesS,

where z € R? is the decision variable, 7 : Q — R™ is a
random variable on (€2, 7,P), and g : R® x R? x R™ — R
is a measurable and integrable function for each pair (z, z) €
R™ x R%, b : R" x R — R is a convex function, and S is
a measureable set on R™. The feasible set of Problem (SP)
is given by

Z={zeR?:E{g(x, z,m(w))} < h(z,z) for all z € S}.

Solving this class of problems is extremely challenging
because analytic expressions of the expectation constraint are
rarely available, even if the distribution PP is known (which is

not the case in this paper). To solve this problem, in Theorem
1, we derive a chance-constrained problem whose feasible set
is a subset of Z. Thus, its optimal solution is an upper bound
to that of Problem (SP). Critically, such a relaxation allows
us to rely on the scenario approach (see Section II) to derive
tight confidence bounds on the resulting solution.

Theorem 1 (Inner chance-constrained approximation):
Let ¢ € (0,1) be a given threshold and assume a
uniform upper bound M = sup g(zx,z,n(w)) on g.

Choose v > max (w, hz,z) — M) for all
(z,2) € R" x RY. Define the set

E(w,2) = {w € Q: gla, 2, n(w)) + v < h(z, 2)},
and consider the chance-constrained problem

min ¢’z

z (CCP)

s.t. P{E(z,2)} >1—¢, forall z €S,

whose feasible set is given by
2 ={2eR":P{B(z,2)} >1—¢, forallz € S}.

Then we have that 2’ C Z.

Proof: Pick any z € Z’. Our goal is to show that z € Z.
To this end, pick any z € § and notice that

Blote, @) = [ gl n) )+

[, otz ),
Hence, we can derive the following
E{g(z,z,n(w))}
< (h(z,2) —v)P{E(x,2)} + MP{E(x,2)°}
=h(x,z) —v+P{E(z,2)°}(M — h(z,2z) + v)

(10)

where the first inequality follows from the fact that g(z, z, w)
is less than or equal to h(z,Z) — v on the set E(x,z) and
that g is uniformly upper bounded by M on the whole space
Q. The equality is obtained by substituting P{F(z,z)} =
1 —P{E(z,z)°}. Since v > h(x,z) — M for all (z,2) €
R™ x RY, then we may use the fact that P{E(z,2)} < e
(due to feasibility of Z) to obtain an upper-bound to (10) as

h(z,z) —v+P{E(z,2)°} (M — h(z,2) +v)
< h(z,z) —v+eM—h(x,z)+v)
=h(z,2) + e(M — h(z,2)) — (1 —e)v
< h(z, 2),
where the last inequality follows from the fact that v >

w for all (z,2) € R™ x R?. Hence, we observe
that z € Z, thus concluding the proof of the theorem. [ ]

Note that while the requirement that the constraints are
uniformly upper bounded may seem limiting, this is trivially
satisfied for SBF design where a barrier B(x) is guaranteed
to be bounded and non-negative.
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B. Data-driven stochastic barrier design

To apply Theorem 1 to synthesise SBFs, we state the
following trivial, yet important, corollary of Theorem 1.

Corollary 1: Consider System (5), and the barrier func-
tion B(xz,f) as in Definition 2, where B is convex in
6. Assume a given ¢ € (0,1) and M > 1, and define
decision variables z = (¢, ~y, §) and functions g(z, z, n(w)) =
B(f(z) +n(w),0) and h(x,z) = B(x,0) + c. Choose v >
max E(M_liﬁ(f’z)),h(x,z) - M) for all (z,2) € R™ x R,
Then, the feasible set of

min v+ cT
v2>0,¢>0,0
B(z,0) € [0,M], forall z € R",
B(z,0) <, for all x € Xy, (CCBP)
S. t.
B(z,0) > 1, forall z € U,

P{E(x,2)} >1—¢, forall z € S,

is contained in the feasible set of Problem (BP).
Corollary 1 opens new ways for data-driven design of
stochastic barrier functions. Rather than relying on standard
concentration inequalities to approximate the expectation in
Equation (9) as in [17], we can perform chance-constraint
tightening with the parameter v to guarantee the feasible set
of (SBP) is an inner approximation of (CCBP). Building on
this result, in Lemma 1 we use the scenario approach to
design SBFs from data with high confidence.

Lemma 1: Assume that S = {wy,...,wn} is a collection
of N independent samples from the distribution P. Fix € €
(0,1), M > 1, and v > max (w,h(l,z) —M)

for all (z,2) € R*xR% and let 8 = >0 (V) el(1—e)N 7,

where d = ¢(n + 1) + 2. Let (¢*,7*,0*) be the optimal
solution to the scenario program

min v+ T
~>0,¢>0,0
s.t. B(x,0) € [0, M], for all z € R",
B(z,0) <7, for all x € Xy,
B(z,0) > 1, forall z € U,
9(@,z,n(w)) + v < h(z, 2),
for all w € S, forall z € S,
(SBP)

where g and h are defined as in Corollary 1. Then, with
confidence 1 — 3, (c*,~v*,0*) defines a lower bound on the
safety probability, i.e.,

(8.T)=1- (" +cT).

Remark 1: Observe that the amount of data N required to
achieve a desired confidence 1 — § with existing approaches
based on concentration inequalities to approximate Equation
(9) is proportional to 1/8 [17] whereas for our approach,
the amount required is proportional to In(1/3) [27]. To put
this into perspective, consider 3 = 10~%, which is the gold
standard in both aviation and autonomous vehicle design [1],

then 1/8 = 10° while In(1/3) ~ 20.7.

C. Linear programming reformulation of stochastic barrier
function design

Lemma 1 defines an optimization problem (Problem
(SBP)) for the data-driven design of SBFs. The resulting
problem can for instance be solved under the assumption
that B is a SoS function using semi-definite programming
[5, 6]. However, while viable, this approach can often be
conservative and lack of scalability [16]. Motivated by the
PWA structure of System (5), we propose instead to use a
PWA function to parameterize a SBF. Then, by applying
tools from robust LP (i.e., Proposition 1), we show that
Problem (SBP) can be transformed into a linear program
with a finite number of constraints. To this end, let P =
{Py,...,P;} be a polyhedral partition of the state space
X with £ > (. Assume for simplicity that each region P;
is a subset of exactly one region P,.(; from the partition
P, with a surjective function r : {1,...,¢} — {1,...,¢}
mapping between indices. In other words, the partition for
the PWA barrier candidate P is aligned with the partition of
the dynamics P, although potentially more fine-grained. We
consider a PWA SBF B defined as follows

B(z,0) = max(By(z,0),...,Biz,0)), (11)
where
ul T+ v, for z € P,
Bi(w,0) = { 0, otherwise,

and 6 € RY"+1) is the set of parameters (u;,v;) € R™H1,
i=1,... ,17, used to define the SBF.

For convenience, we also define collections of indices from
I={1,...,0} that correspond to elements of the partition P
that have non-empty intersection with the set of safe, unsafe,
and initial states, respectively:

I‘sz{iEI:PZ‘ﬂS#@},
Iu:{iGISPiOZ/{#@},
IXUZ{Z.EIZPZ'QX()#@}.

With the family of barrier functions defined, we turn our
attention to the reduction of Problem (SBP) into a linear
problem. In order to do that we need to reduce each of
the constraints in Problem (SBP) into linear constraints. The
reduction for the non-negativity, upper bound, initial, and
unsafe set constraints follow a similar structure. Hence, for
brevity, we only describe the process for the non-negativity
constraint. To this end, we first make an assumption regard-
ing the boundaries between regions, which we assume to
have measure zero.

Assumption 3: We assume for any two regions ¢, j where
i # j that

P{lweQ:x(k)e P,NPjforall k=0,...,T}=0.
This assumption, generally satisfied in practice, is necessary
to guarantee that the intersection between two adjacent
regions has no volume. Due to Assumption 3, we can impose
B;(z,0) > 0 for all z € P; independently for each region.

(12)
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Fig. 1: Given two regions P;, P; and a realisation of the
noise w, the set Q;;(w) represents the subset of x € P; such

tat f(x) +n(w) € P;. In other words, @;;(w) is the subset
of P; that can reach P; given the realisation of the noise w.

Note that for each region i the barrier B;(x,#) is an affine
function in 2 over the polyhedron P;. Hence, the resulting
constraint is a robust LP constraint (See Section II). Thus,
we can rely on Proposition 1 to transform the problem to a
lifted space representable by a regular LP constraint. More
concretely, consider the constraint B;(z,0) = u] x + v; >
0 for all x+ € P; where P; is defined by its half-space
representation (H;, h;) € R™*™ x R™. Then with dual
variable \; € R, this can be replaced with the following
two equivalent constraints using Proposition 1: hl i < v
and I{7T)\z = —U;.

Now, consider the last constraint of Problem (SBP),
namely g(z,z,n(w)) + v < h(z,z) for all w € S, for all
x € S. For this constraint Proposition 1 is not immediately
applicable, as we must consider the value of the barrier
before and after a transition. Instead, we construct a robust
LP constraint for each pair of regions (i,7) € Is x I:

B;(fr@) (@) +n(w)) +v < Bi(z) + ¢,

(13)
for all w € S, for all v € Q;;(w).
The random subset @Q);;(w) of X is defined as
Qij(w) ={w € Pi: frpy (@) +n(w) € P}, (14)

representing the set of elements in the region P; that are
mapped to P; under a given realisation of the noise. A
pictorial example of Q);;(w) can be found in Figure 1. Since
both P; and P; are polyhedra and fr(i) is an affine function,
Qi;j(w) is a polyhedron [23]. Thus, we can again use
Proposition 1 to transform Equation (13) to linear constraints.
Specifically, for a pair of regions (i,j) € Is x I and a
realisation of the noise w € S, with half-space representation
(Hij, hij) € R™™ x R™ of region @;;(w) and dual
variable \;; € RY,, the original semi-infinite constraint is

transformed into the following two constraints
h;rj)\ij <wv;—vj — u;-r(br(i) +nw)) +c—v,

Hijhig = Aoy — i

Collecting together all finite sets of constraints, the LP
equivalent representation of Program (SBP) is as follows.
min v+ T
720,¢20,6
h;r)\z S Vi, Hl—r)\l = —Uj,
h;»r)\i]w <M — v, HlT/\ZM = wu;, forall i € I,
h;-l(—))\i() < v -, Hz—g>\10 = U;0, for all 7 € IXm
s. t. h;r)\zu <wv; —1, H;Aiu = —u;, for all ¢ € Iy,
h;rj)\ij <v; —vj — u;r(bT(i) +nw))+c—v,

H;'j—-)\ij = A;—(i)uj —uy, forall w € S,
for all (i,j) € Is x I,

(FSBP)
where \;, A\iar, Aio, Aig, Ai; are non-negative dual variables.
(H;o, hio) denotes the half-space representation of P; N Xj.

Theorem 2: Let B be a piecewise affine (PWA) stochastic

barrier function as defined in Equation (11). Then, an optimal
solution z*(.S) to Problem (FSBP) is an optimal solution to
Problem (SBP).
By Lemma 1 and Theorem 2, Problem (FSBP) is an equiva-
lent LP representation of Problem (BP) that can be employed
to synthesize a SBF. The number of decision variables and
constraints of the resulting LP depends on the number of
half-spaces necessary to represent each polyhedron. In par-
ticular, assume for simplicity that each polyhedral region is
represented by m half-spaces. Then, the number of decision
variables in Problem (FSBP) is

2 4+ (n+1)-L+m-(20+ |Ix,| + L + N|Is|0),
~N ———
v,C 9

dual variables

while the number of constraints is:
2+m- (60 + 3|Ix,| + 3|Iu| + 3N|Is|f).

Note that both the number of constraints and number of
variables depend on term mN|Is|¢, where we remark that
|Is| and ¢ are respectively number of pieces in the SBF that
intersect with S and total number of pieces of the SBF. This
illustrates how the dimension of the resulting LP problem
grows linearly in the number of samples N and quadratically
in the complexity (i.e., number of pieces) of the barrier B.

VI. EXPERIMENTS

To show the efficacy of the proposed method, we evaluate
it on three different benchmarks. Namely:
o a 1D linear system governed by the following dynamics
x(k + 1) = x(k) + n(k), which is a martingale,
e a 2D linear model of longitudinal dynamics for a drone
from [20],
e a 2D PWA model of a vehicle driving with constant
velocity subject to a wind disturbance along its path.
For the martingale system, the goal is to quantify the
probability that from any state within a radius of 0.5 around
the origin the system will stay within a set of radius of 2.5
around the origin for a time horizon 7' = 10. For the drone,
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the goal is to certify that the speed of the drone always
stays lower than 10 units, again for a time horizon 7' = 10.
Please note that in [20], they consider an uncertain mass of
the drone, which is not compatible with Problem (FSBP). To
make the benchmark compatible, we let the mass be equal to
the center of the uncertainty interval, namely m = 1. Finally,
the last model represents a vehicle driving with constant
velocity. The goal is to stay on the road within 7' = 10,
despite a varying disturbance from wind along the route.
Mathematically, we can describe the dynamics as follows:

x(k+1) = {(1) 0.5(9)57] x(k) + [o.g;#] k)

where we choose a velocity v = 13.89, a time resolution
7 =1, and a disturbance d = 0.0626 for regions where the
longitudinal position x; satisfies 80 < x7 < 120 and d =
0 otherwise. 7)(k) Gaussian noise with diagonal covariance,
which of course is assumed unknown and only iid. samples
can be generated from it.

We compare our method against SAA [17], arguably
the state-of-the-art for data-driven synthesis of SBFs, on
the three benchmarks. For SAA, we employ a 4th degree
polynomial barrier and SoS optimisation. For our method
we consider a PWA barrier function with ¢ pieces, where ¢
equals 7 and 33 for respectively the Martingale and Drone
example, while for the Vehicle example we consider different
values of / to study its impact. The benchmarks and methods
have been implemented? in Julia (1.8.3) with JuMP,jl (1.6.0)
as the modelling framework and Mosek (9.3.11) as the LP
solver. The experiments are conducted on a computer running
Linux Manjaro (5.10.157) with an Intel Core i7-10610U CPU
and 16GB RAM.

Table I shows the results across all three systems. The
results are reported as the average over 100 trials to ensure
that certification is not due to a lucky sampling of the noise.
Comparing the two methods in Table I, we see that the
proposed method outperforms SAA across all measures on
both the Martingale and Drone system, while the vehicle is
intractable for SAA. This is because the Vehicle example
is a PWA system, which is not compatible with the SoS
optimisation employed for SAA. Note that for any system
considered in this paper, SAA can only certify with a
confidence 99%. On the other hand, our method, thanks to
the bounds we compute in Lemma 1, achieves a confidence
of 1—1077 (see Remark 1). In addition, our method achieves
a higher certified probability of safety and is orders of
magnitude faster. The latter is due the reduction to LP and
to the use of the scenario approach to derive confidence
bounds. To further highlight the data-efficiency, we present in
Figure 2 the number of samples required to achieve a desired
confidence for both methods. The figure clearly shows that
our method requires orders of magnitude less samples to
achieve the same confidence.

Next, we analyze the impact of increasing the number

3Code is available at https://github.com/DAI-Lab-HERALD/
scenario-barrier under a GNU GPLV3 license.

TABLE I: Certified safety and computation time using the
method explained in Section V. Results are reported as the
average over 100 trials. n is the dimensionality of the system
and / is the number of pieces of the PWA SBF B. 1—f3 is the
confidence in the certificate and ((S,T’) is the certified level
of safety. Bold font denotes best method for each measure
and system.

System ‘n Method 7 ‘ B8 ¢(8,T) Comp. time (s)
. Our 7 1072 0.995 0.190
Martingale | 1 g\ © | 79-2 (848 89.49
Drone , Our 33 11072 0.995 60.3
SAA - 11072 0.850 2090
Our 18 | 1072 0.606 12.4
Our 42 11072 0.708 55.6
Vehicle 2 Our 46 | 1072 0.839 57.8
Our 126 | 1072  0.995 172
SAA - | N/A N/A N/A

== Sample average approximation
4107 = Scenario approach
8
2 3-10°1
s 9
5 2-10°1
1-10°F
O = ——— ——— o — L
107! 1072 1073 10~ 107° 10°°

8

Fig. 2: A plot for the number of samples required to achieve
a given confidence 1 — 3 for SAA and the proposed method
using the scenario approach. The number of samples reported
in this plot is specifically for the vehicle system with 126
regions, as reported in Table L.

of pieces in the SBF (I), towards a more expressive SBF.
Table I reveals that increasing the number of partitions
for the barrier (see Equation 11) yields tighter guarantees.
This is expected. In fact, a PWA function with arbitrarily
many pieces can approximate arbitrarily well any continuous
function, thus increasing the flexibility of the framework.
However, this comes at the cost of increased computation
time. Note however, that computation times are always faster
than SAA even for relatively large /. We also observe that
despite using fewer regions for the Drone system, it is slower
to compute than for the Vehicle system with both 42 and
46 regions. To understand why note that the constraint in
Equation (13) is trivially satisfied if @;;(w) is empty, or in
other words, it is impossible to reach region j from region @
under the realisation of the noise w. The Drone system has
more non-empty @;;(w) over the Vehicle system and thus is
slower.
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VII. CONCLUSIONS

We studied the problem of certifying probabilistic safety
for partially known stochastic systems. The problem is
important for the adoption of autonomous safety-critical
systems. This safety verification problem was addressed by
synthesising Stochastic Barrier Function (SBF) with a data-
driven approach leveraging the scenario optimization theory.
To apply the data-driven scenario approach to SBF synthesis,
a novel inner chance-constrained approximation to stochastic
programming was presented. The chance-constrained ap-
proximation was applied to SBFs in Corollary 1: an impor-
tant consequence of it is that it can be easily extended to
other classes of systems, e.g. polynomial or more general
non-linear systems. Experimental studies showed that our
method can certify systems with a confidence that is orders
of magnitude greater than the state-of-the-art methods, while
also producing tighter bounds and being faster.
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